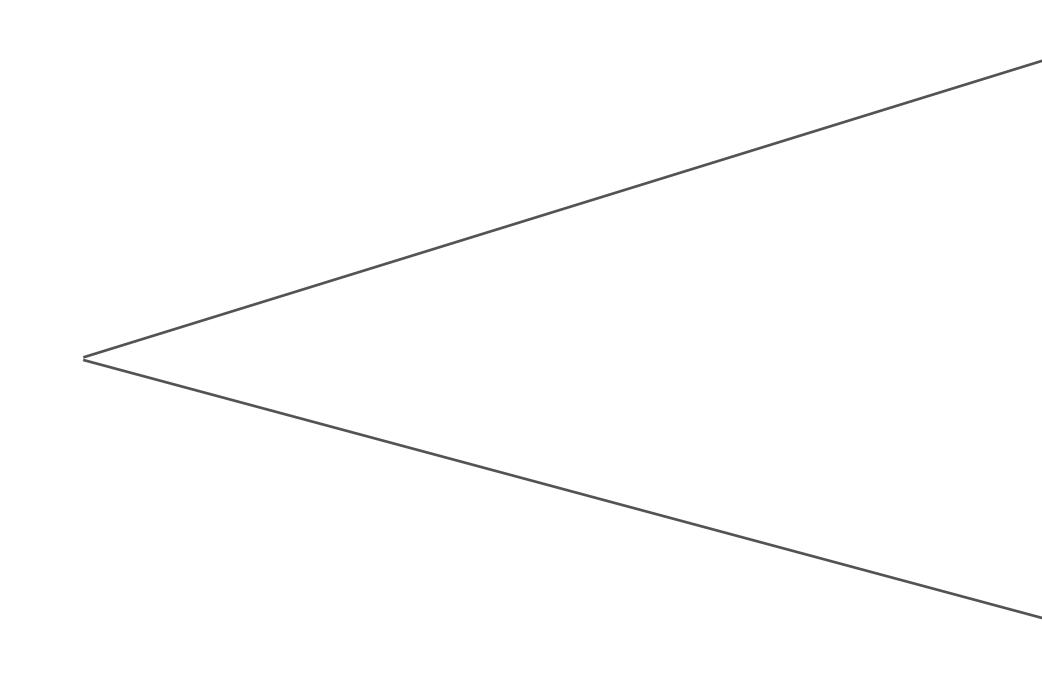
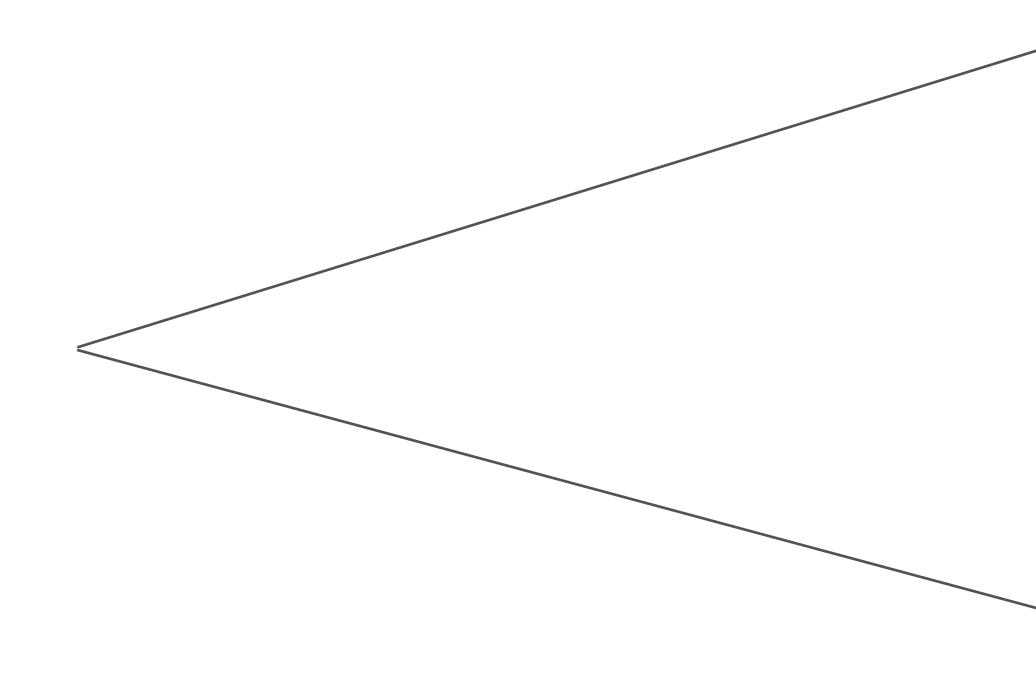
ANGLES

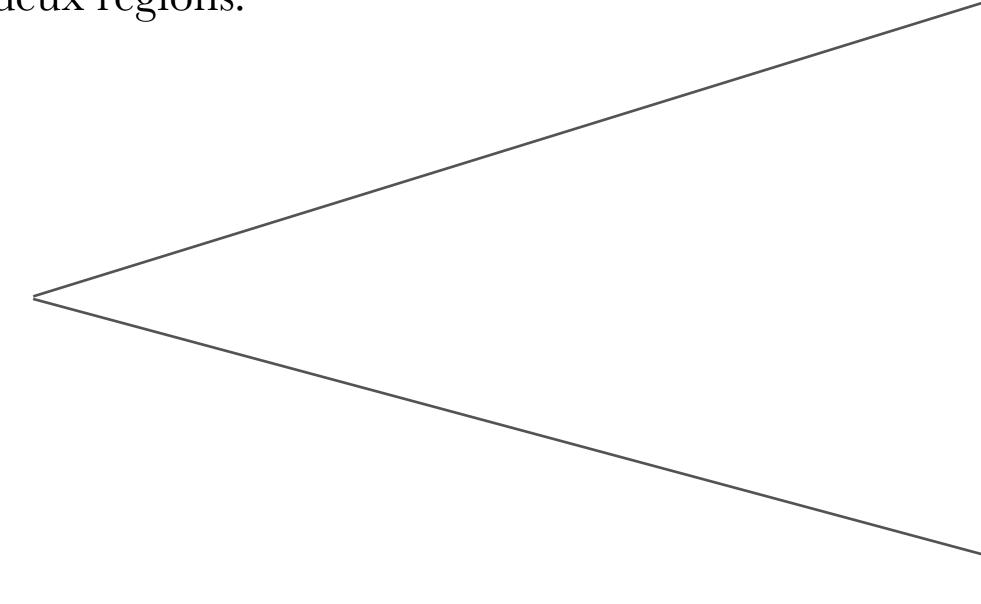
cours 5



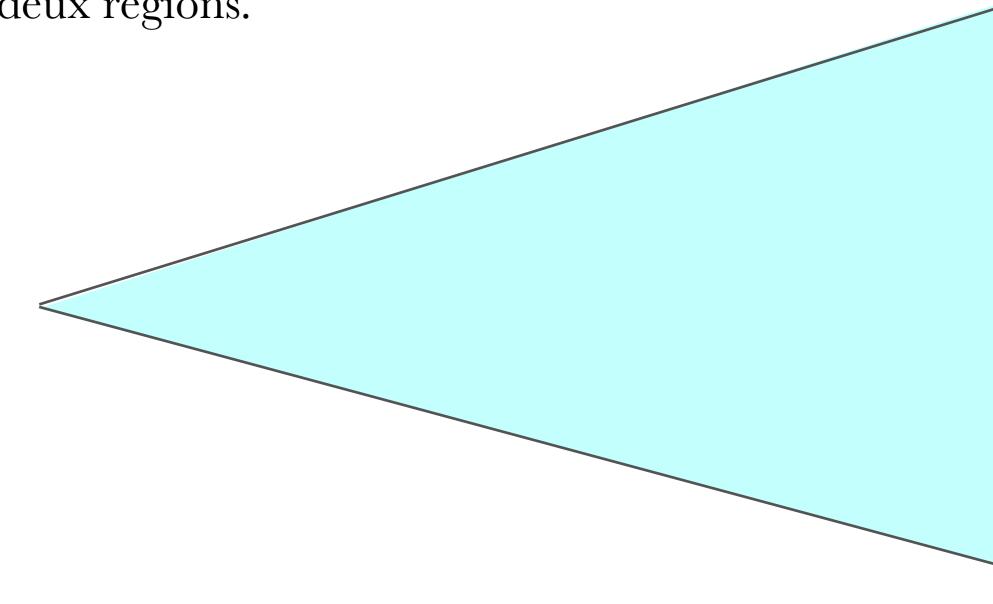
On nomme l'origine le sommet de l'angle.



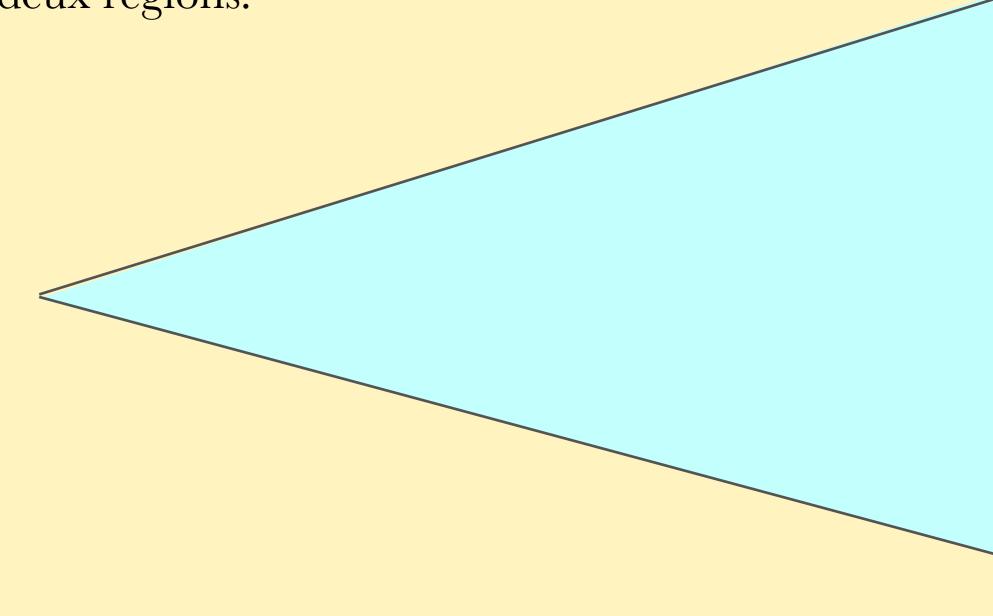
On nomme l'origine le sommet de l'angle.



On nomme l'origine le sommet de l'angle.



On nomme l'origine le sommet de l'angle.

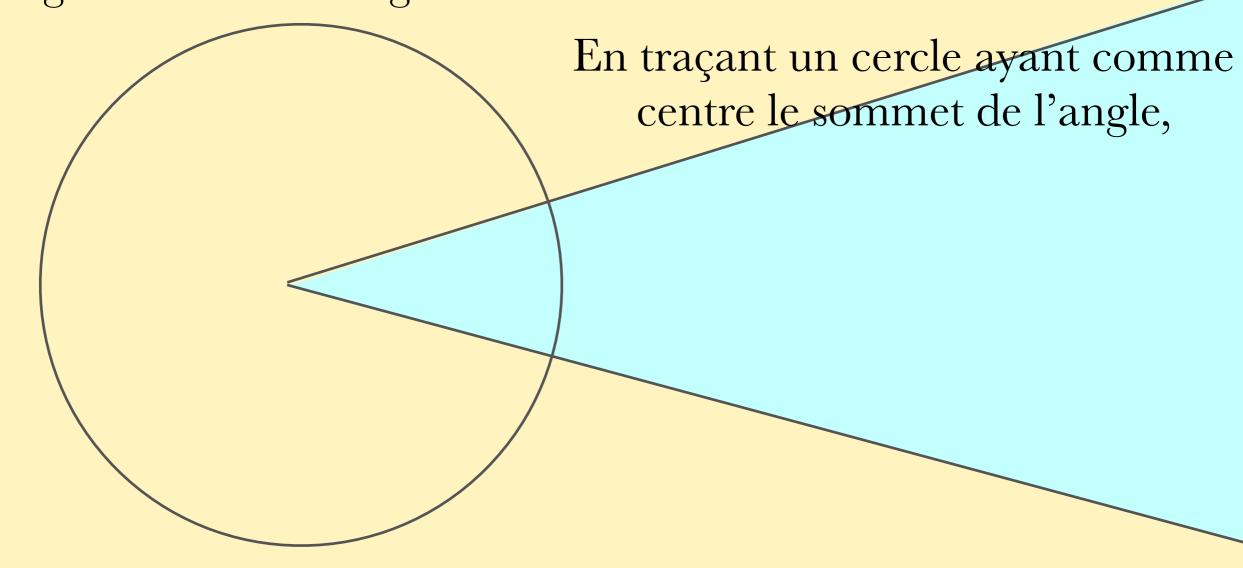


On nomme l'origine le sommet de l'angle.

Un angle définit deux régions.

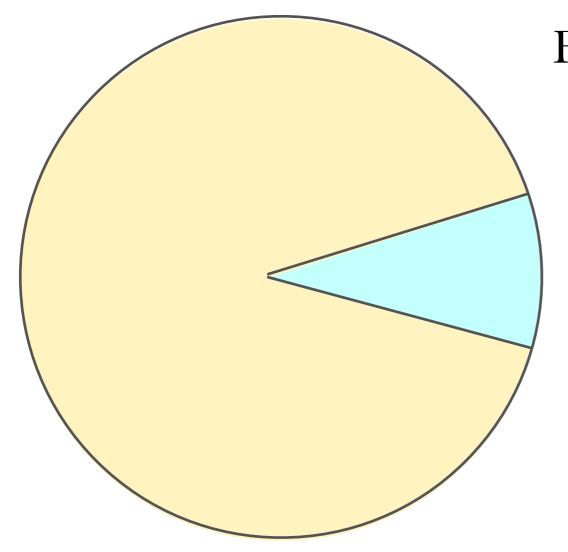
En traçant un cercle ayant comme centre le sommet de l'angle,

On nomme l'origine le sommet de l'angle.



On nomme l'origine le sommet de l'angle.

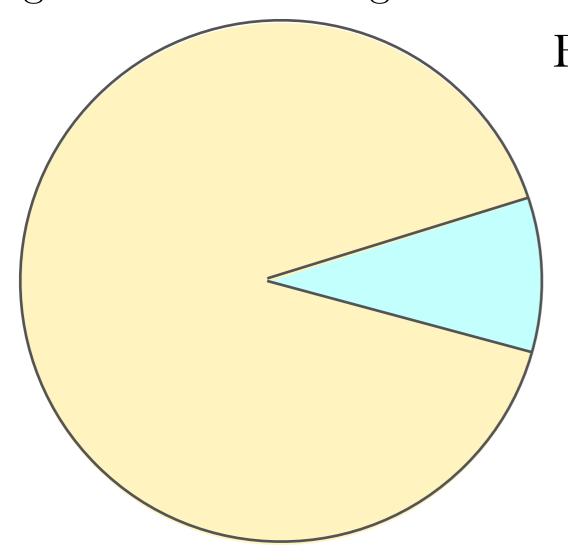
Un angle définit deux régions.



En traçant un cercle ayant comme centre le sommet de l'angle,

On nomme l'origine le sommet de l'angle.

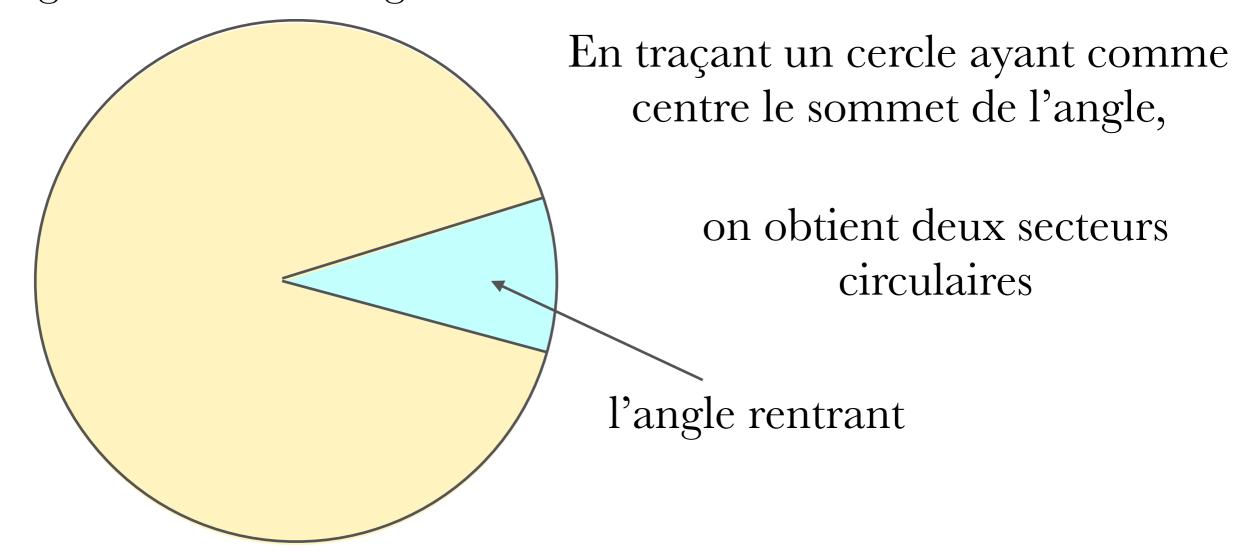
Un angle définit deux régions.



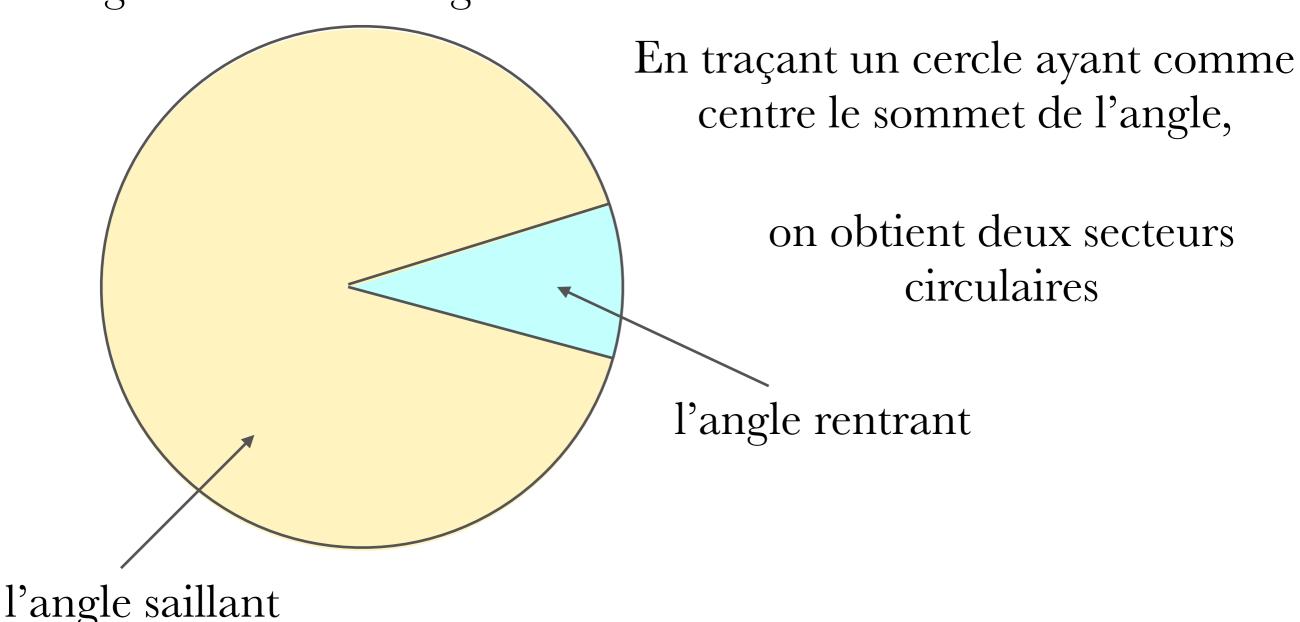
En traçant un cercle ayant comme centre le sommet de l'angle,

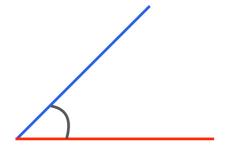
> on obtient deux secteurs circulaires

On nomme l'origine le sommet de l'angle.



On nomme l'origine le sommet de l'angle.





angle aigu

angle obtus

angle obtus

angle droit

Il est très commun d'utiliser des lettres grecques pour indiquer un angle.

Il est très commun d'utiliser des lettres grecques pour indiquer un angle.

Voici une petite liste des plus utilisées:

Il est très commun d'utiliser des lettres grecques pour indiquer un angle.

Voici une petite liste des plus utilisées:

 α alpha

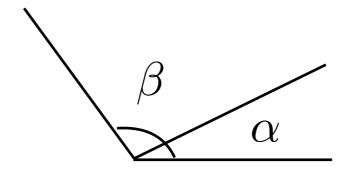
 β beta

 γ gamma

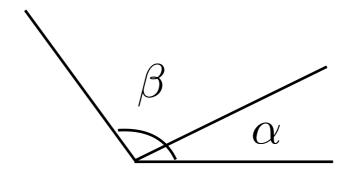
 δ delta

9 theta

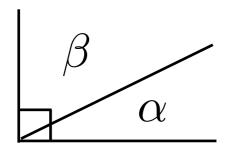
 ϕ phi



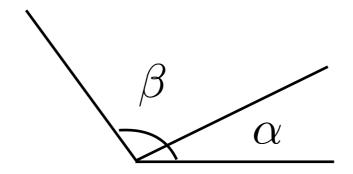
angles adjacents



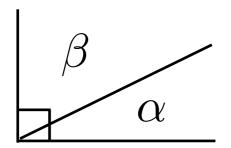
angles adjacents



angles complémentaires

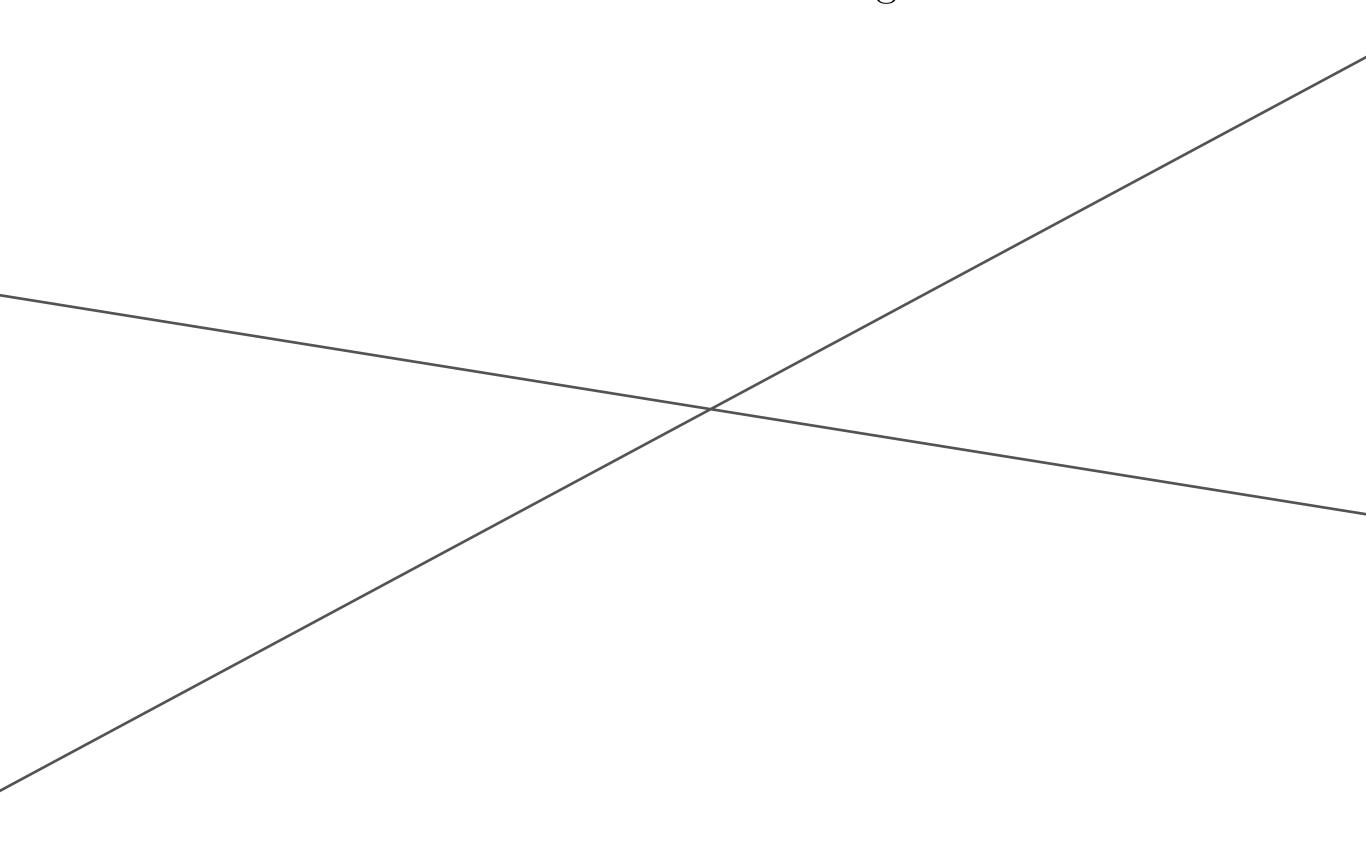


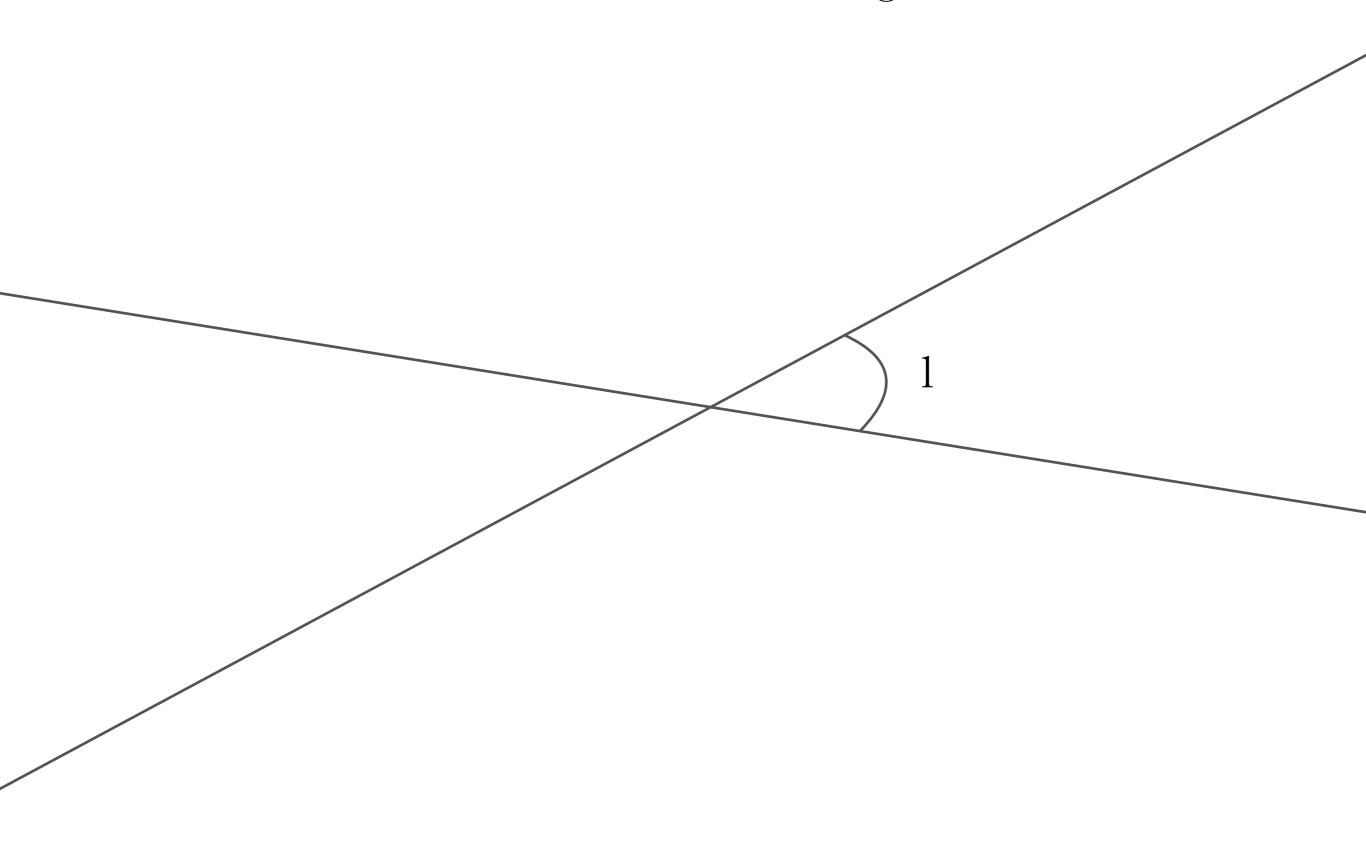
angles adjacents

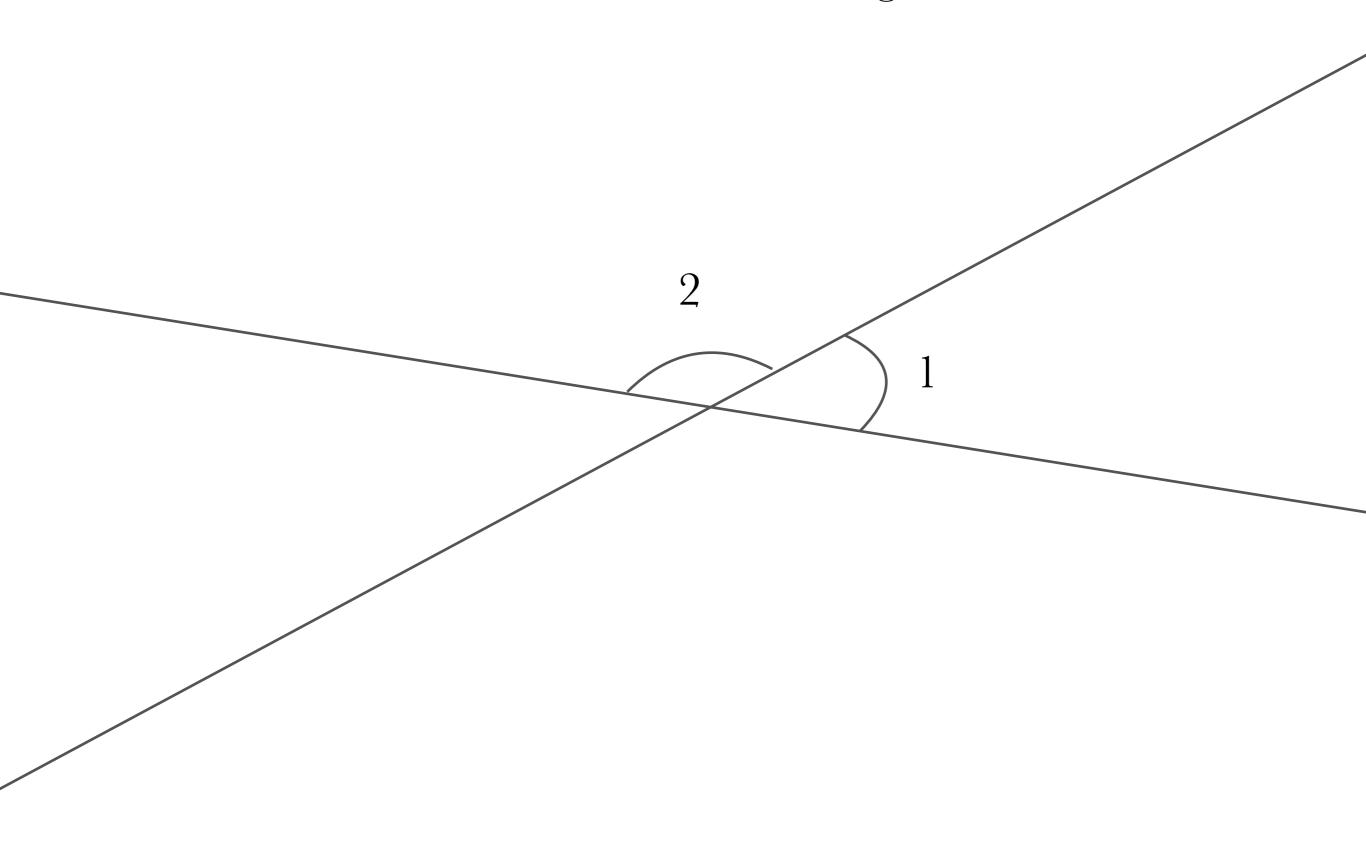


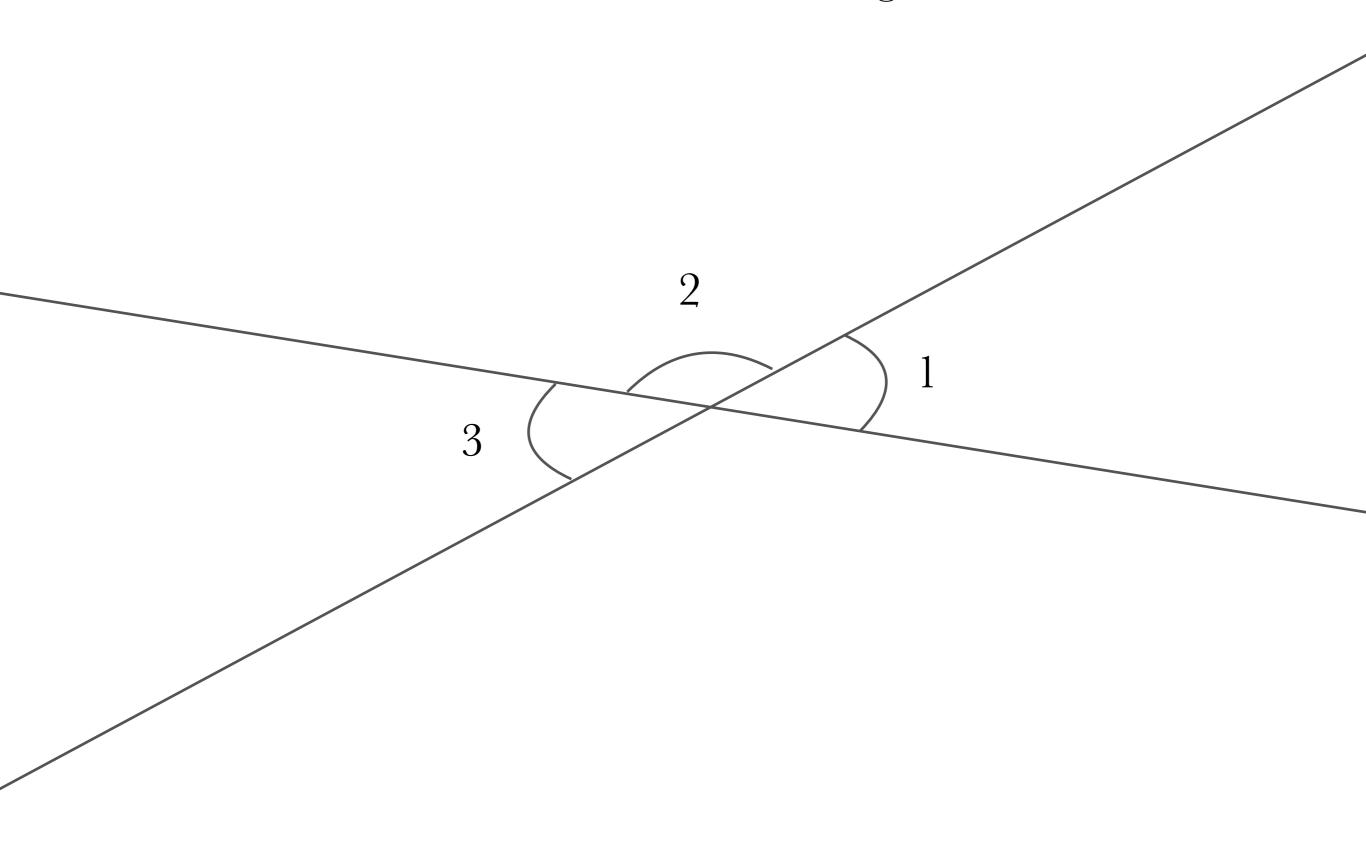
angles complémentaires

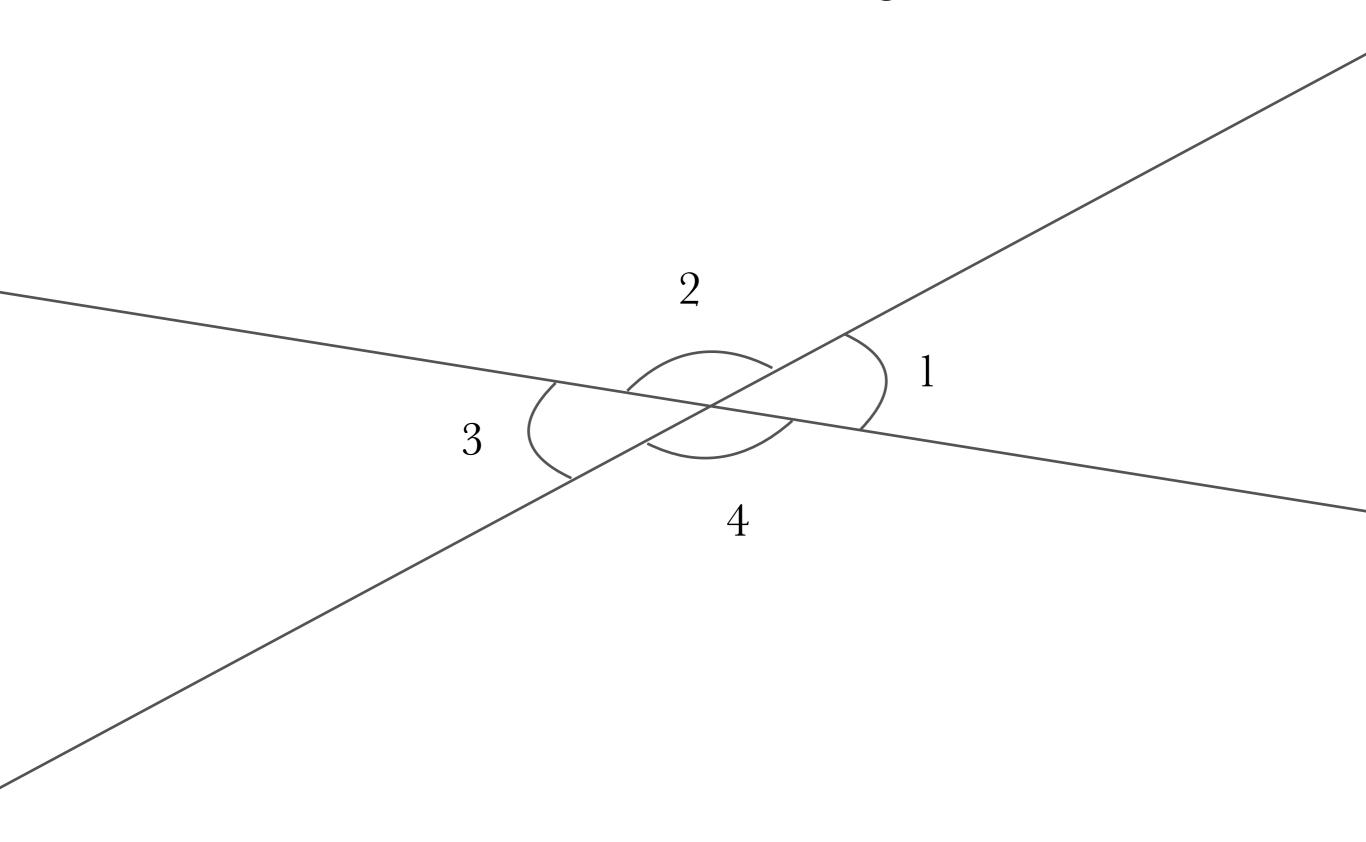
angles supplémentaires

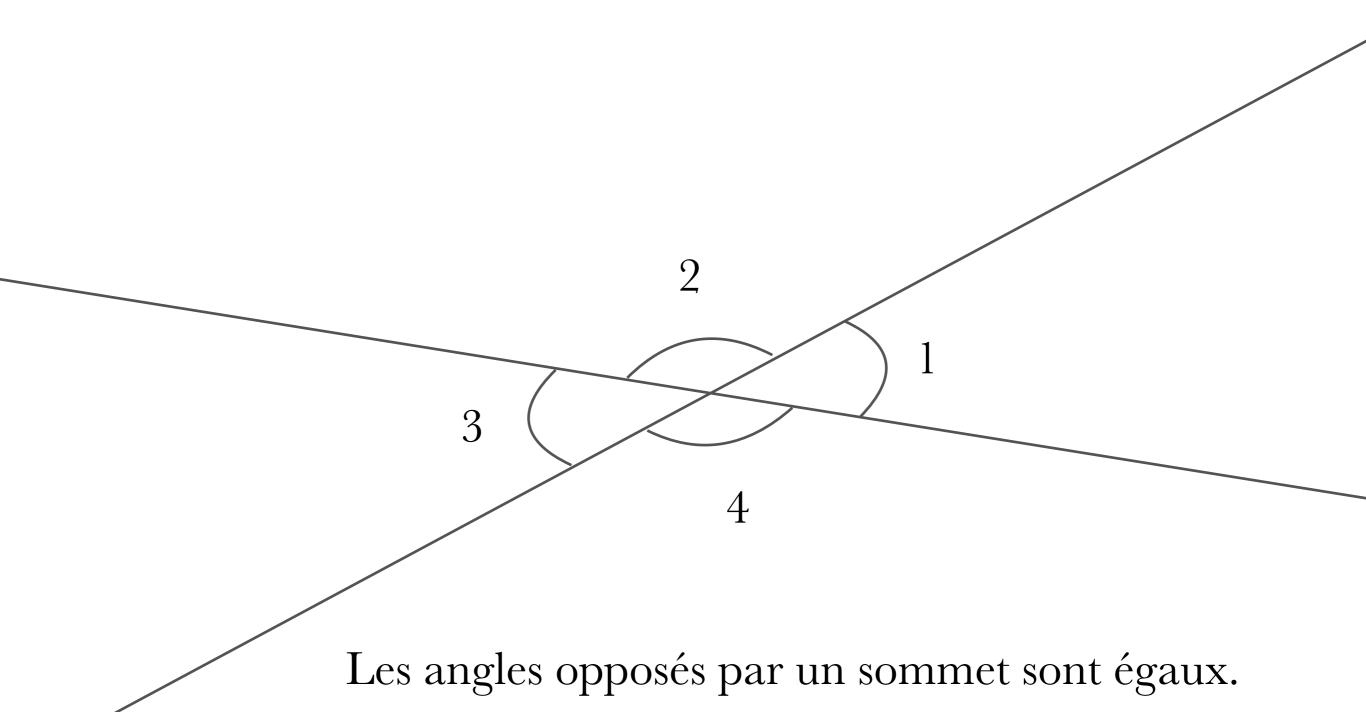


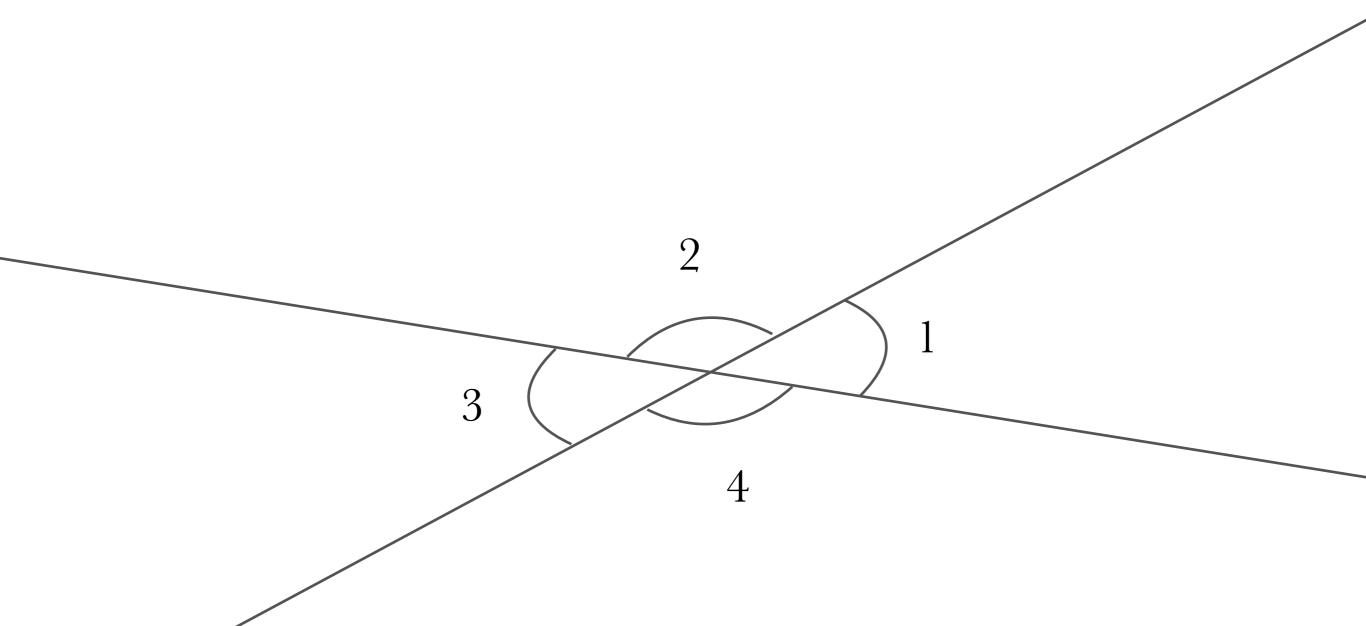






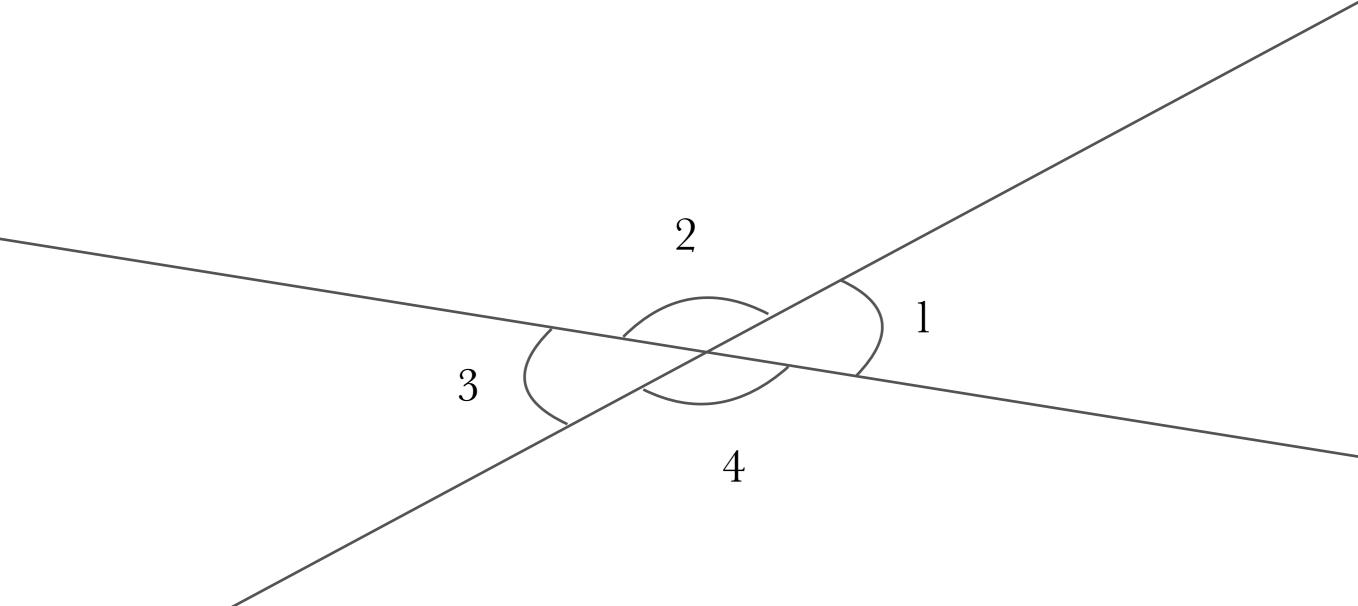






Les angles opposés par un sommet sont égaux.

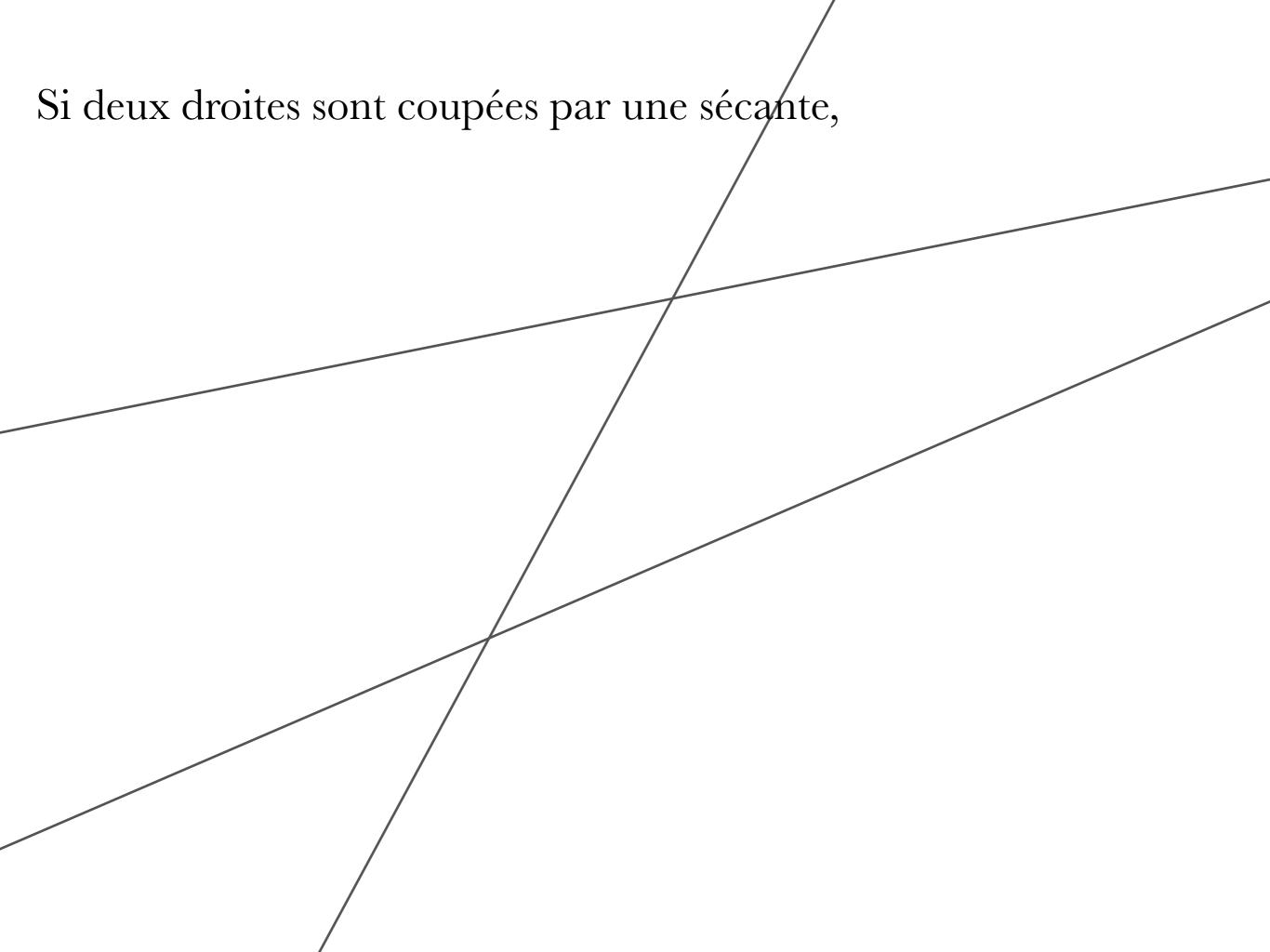
$$\angle 1 = \angle 3$$

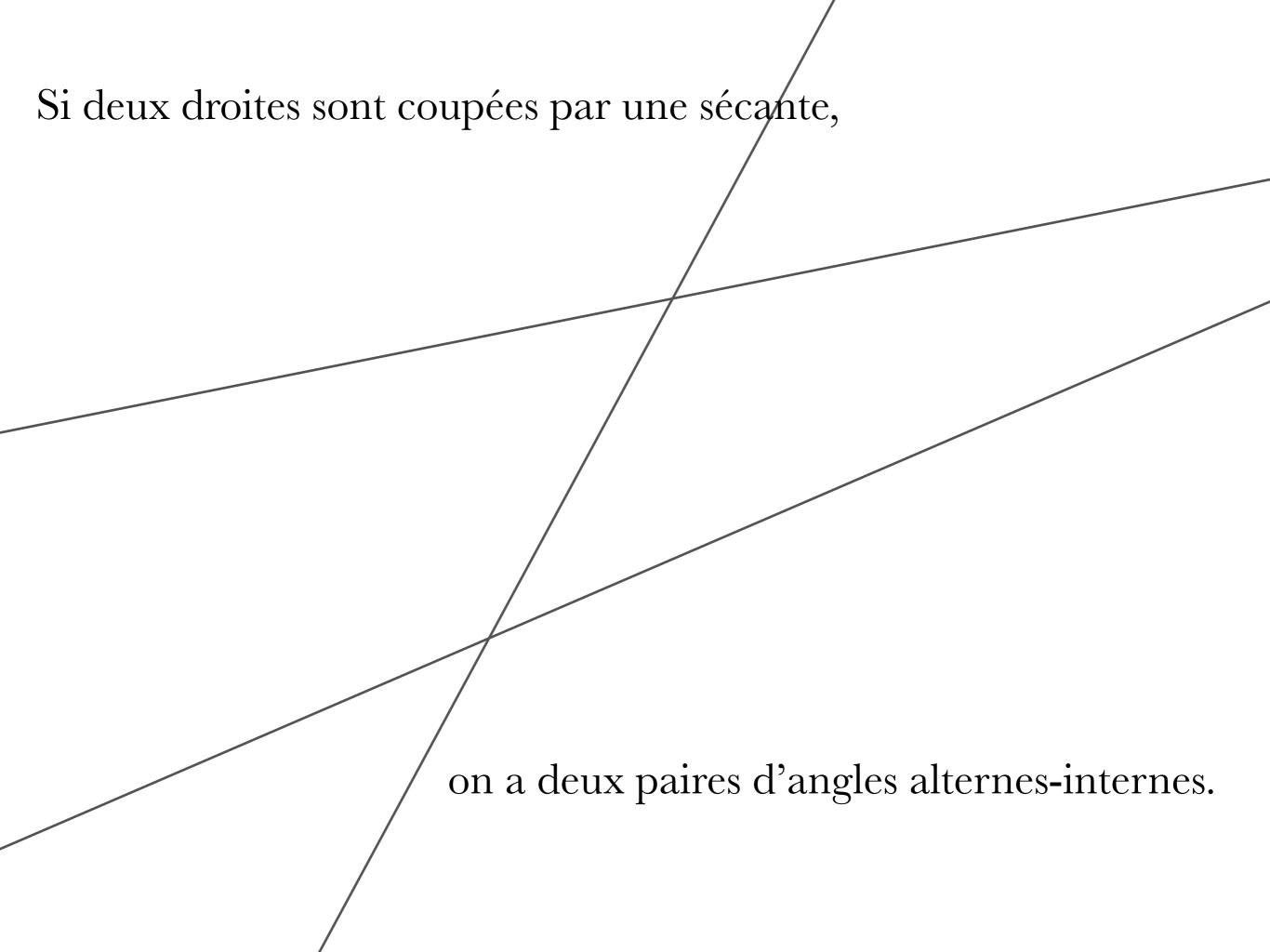


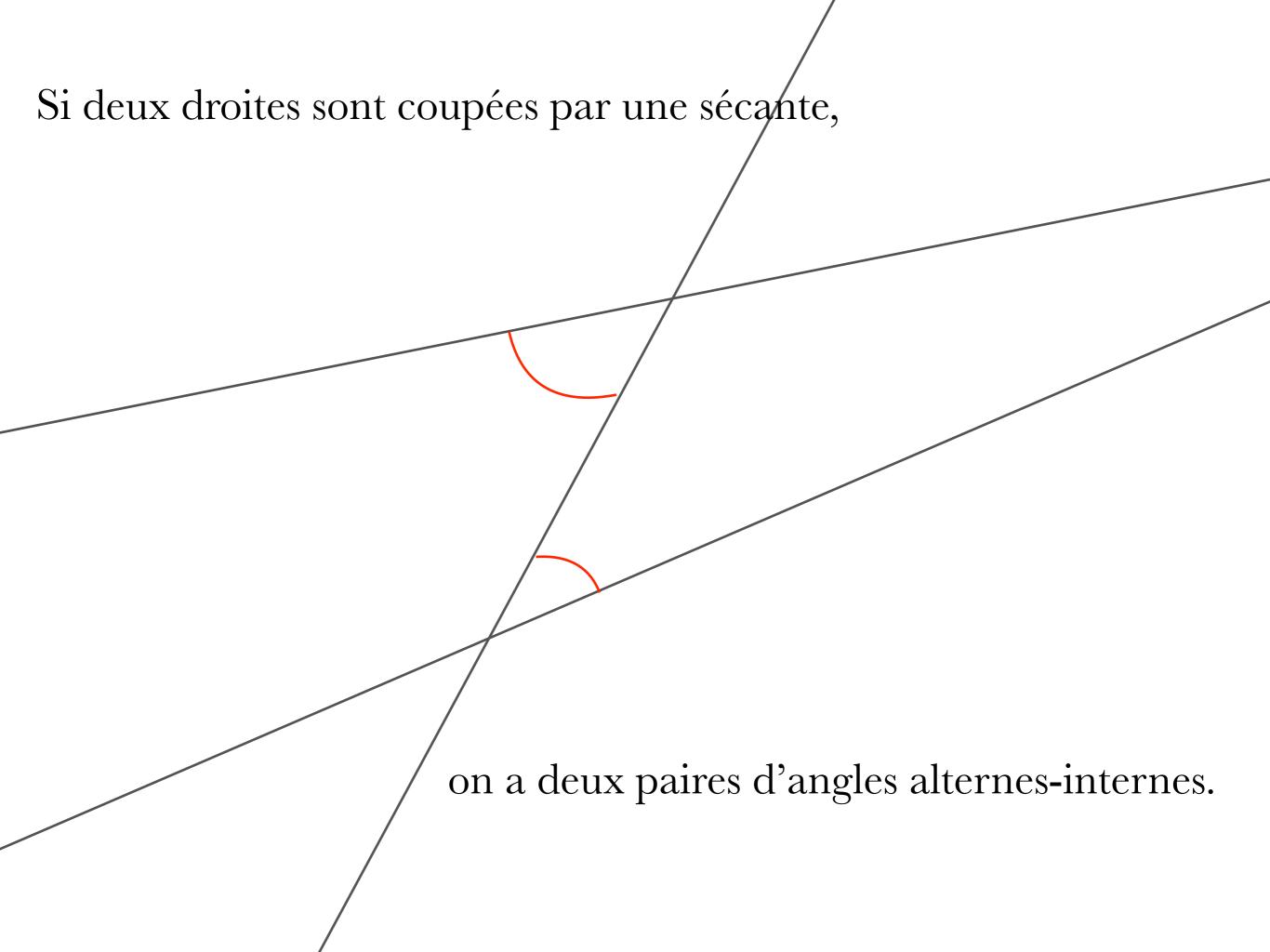
Les angles opposés par un sommet sont égaux.

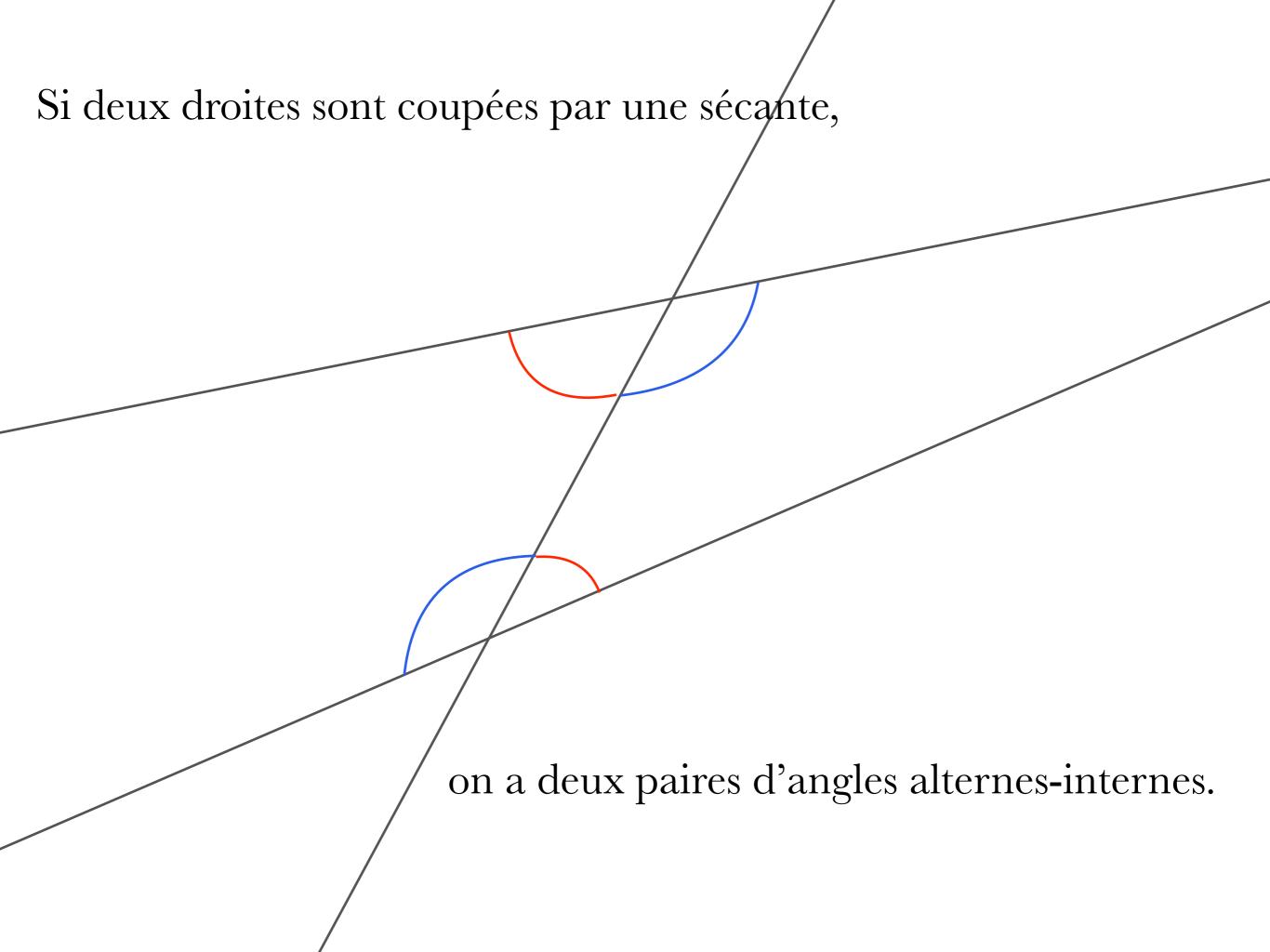
$$\angle 1 = \angle 3$$

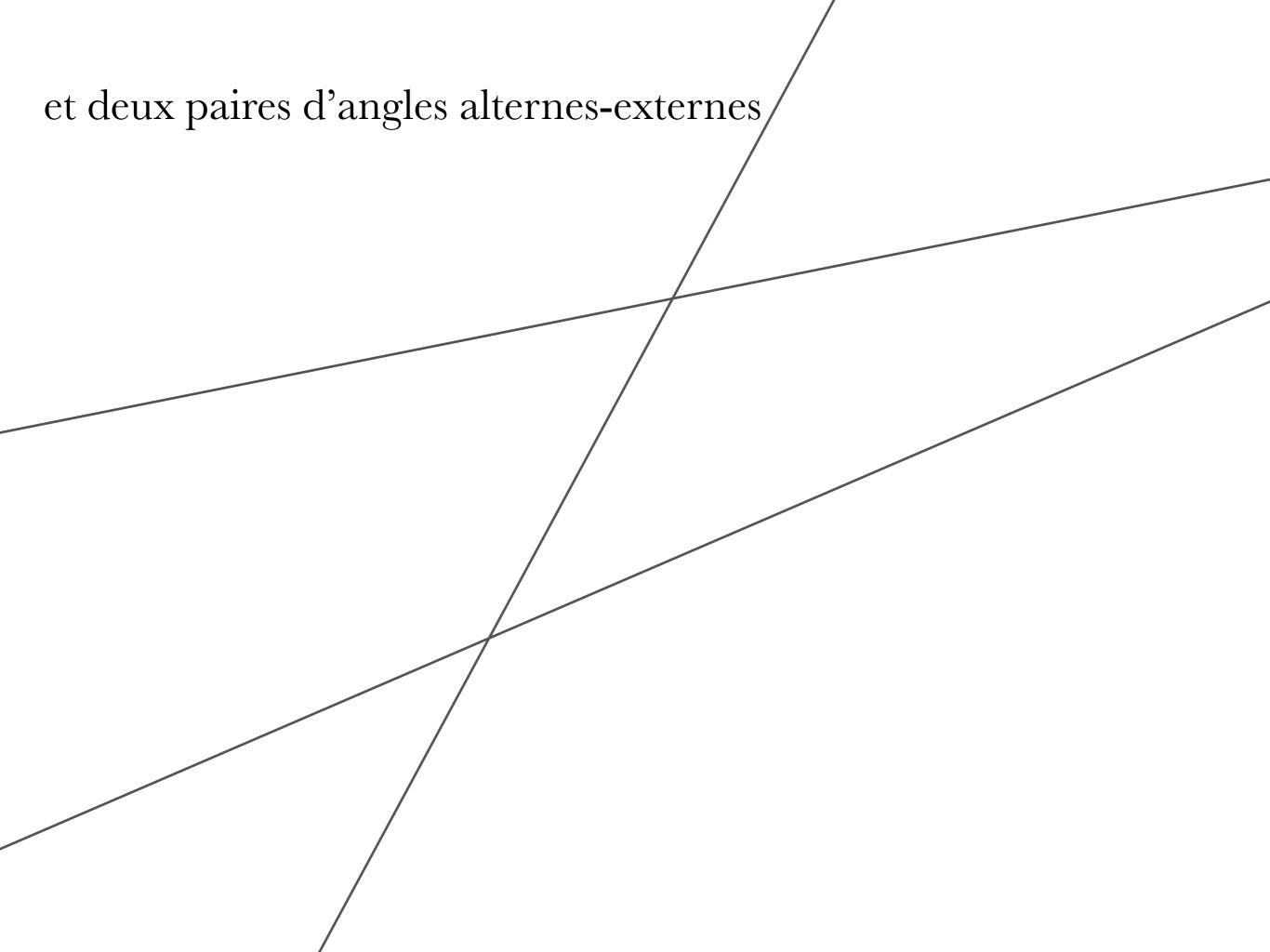
$$\angle 2 = \angle 4$$

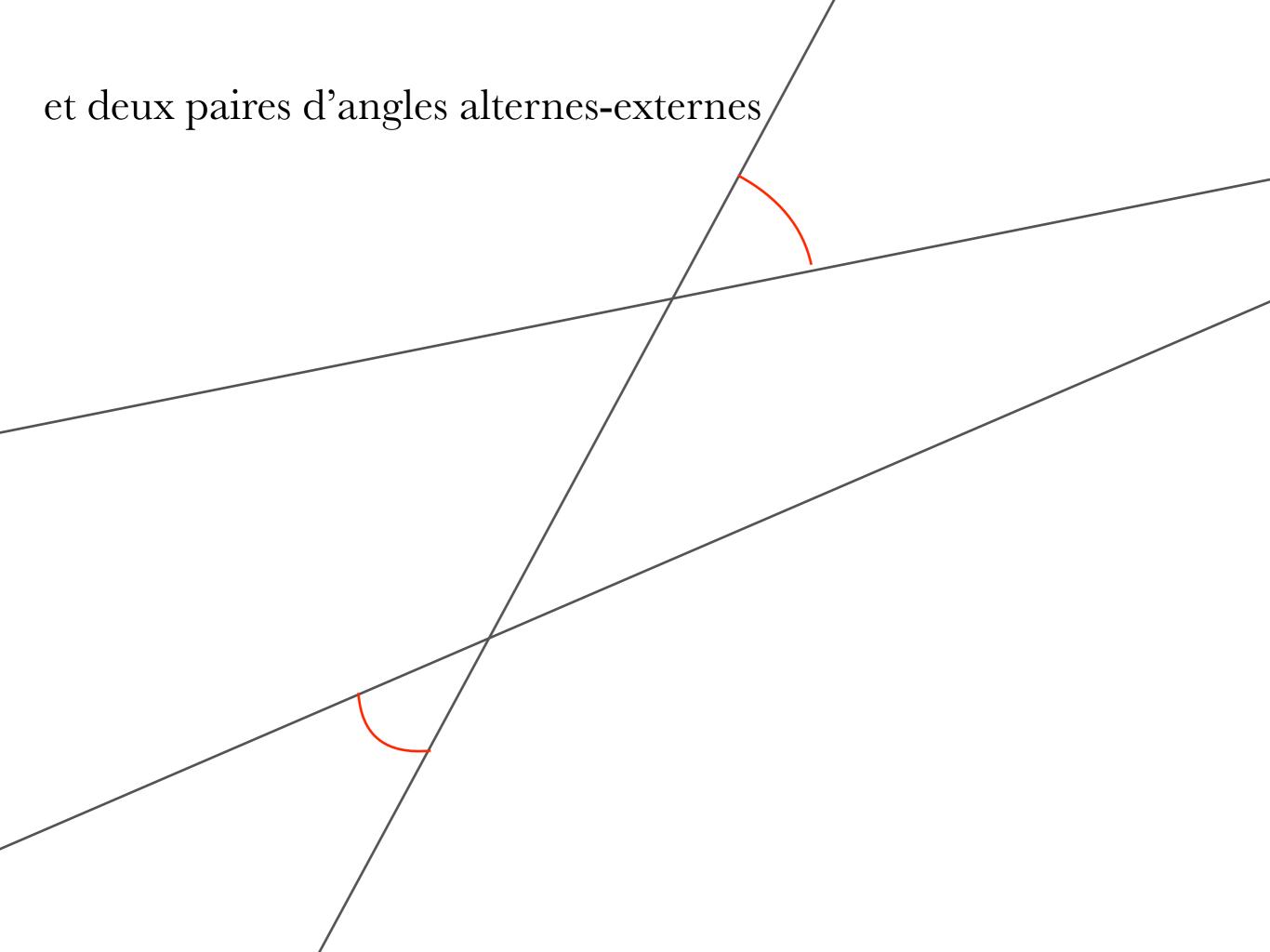


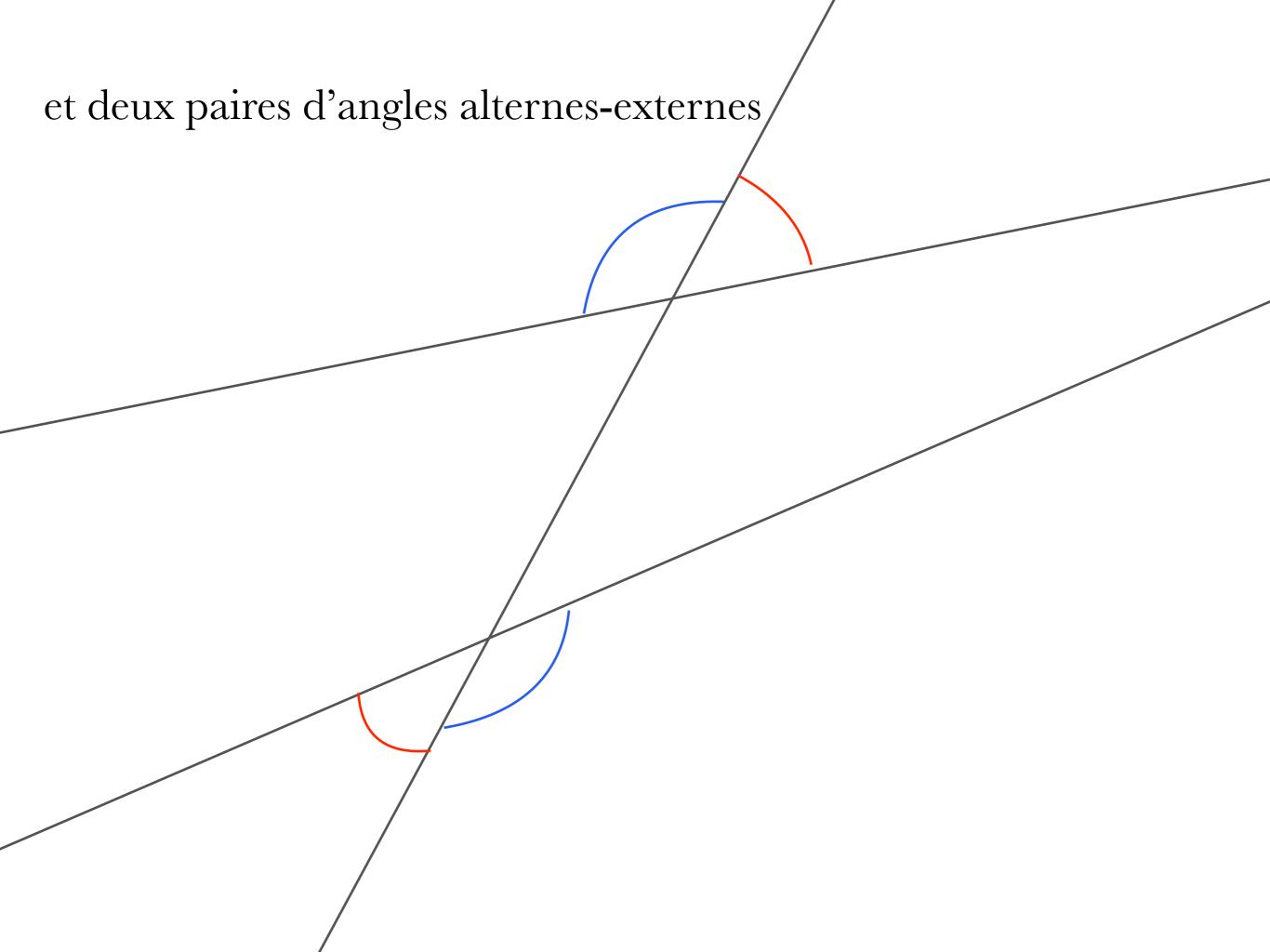


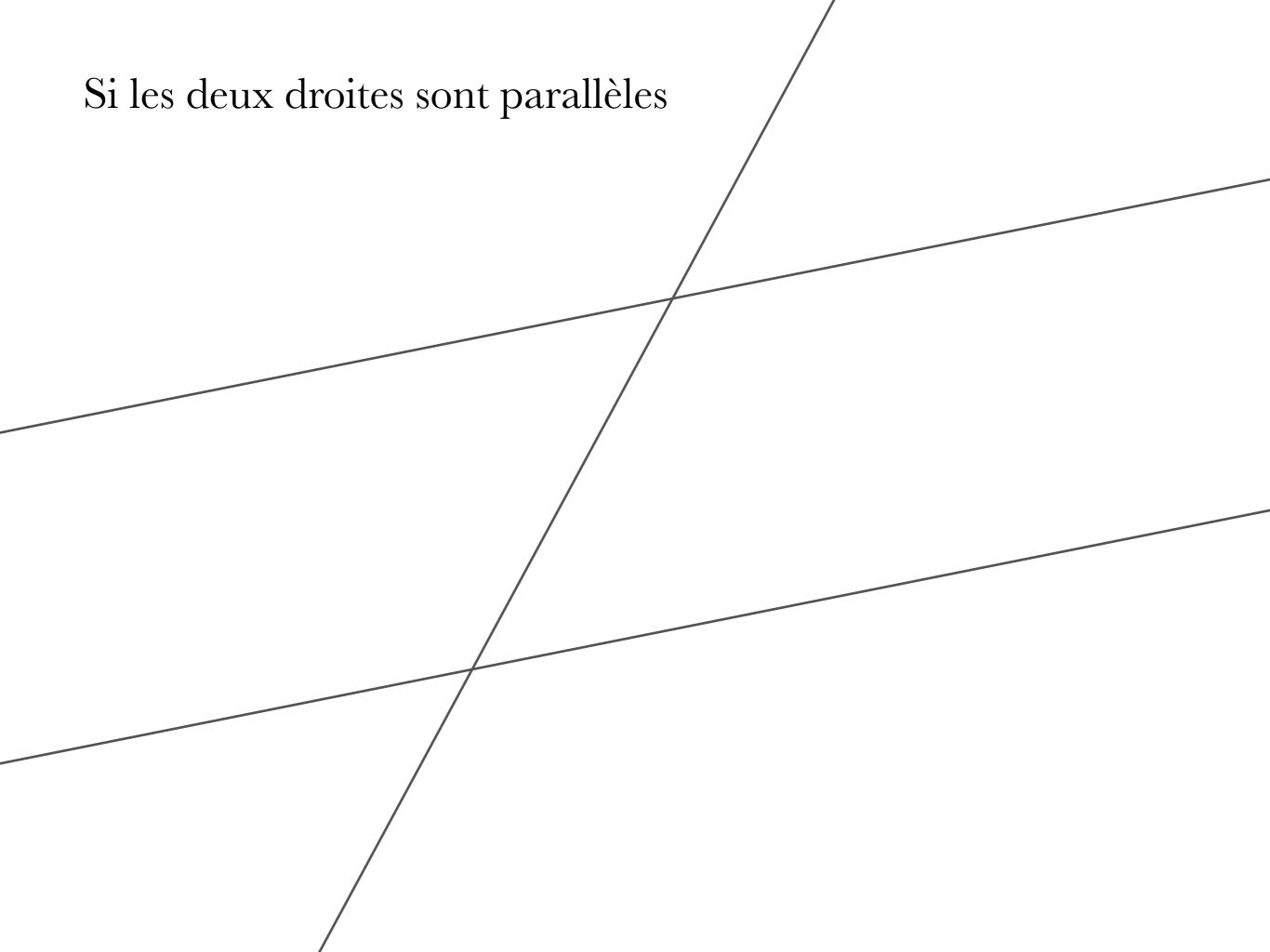


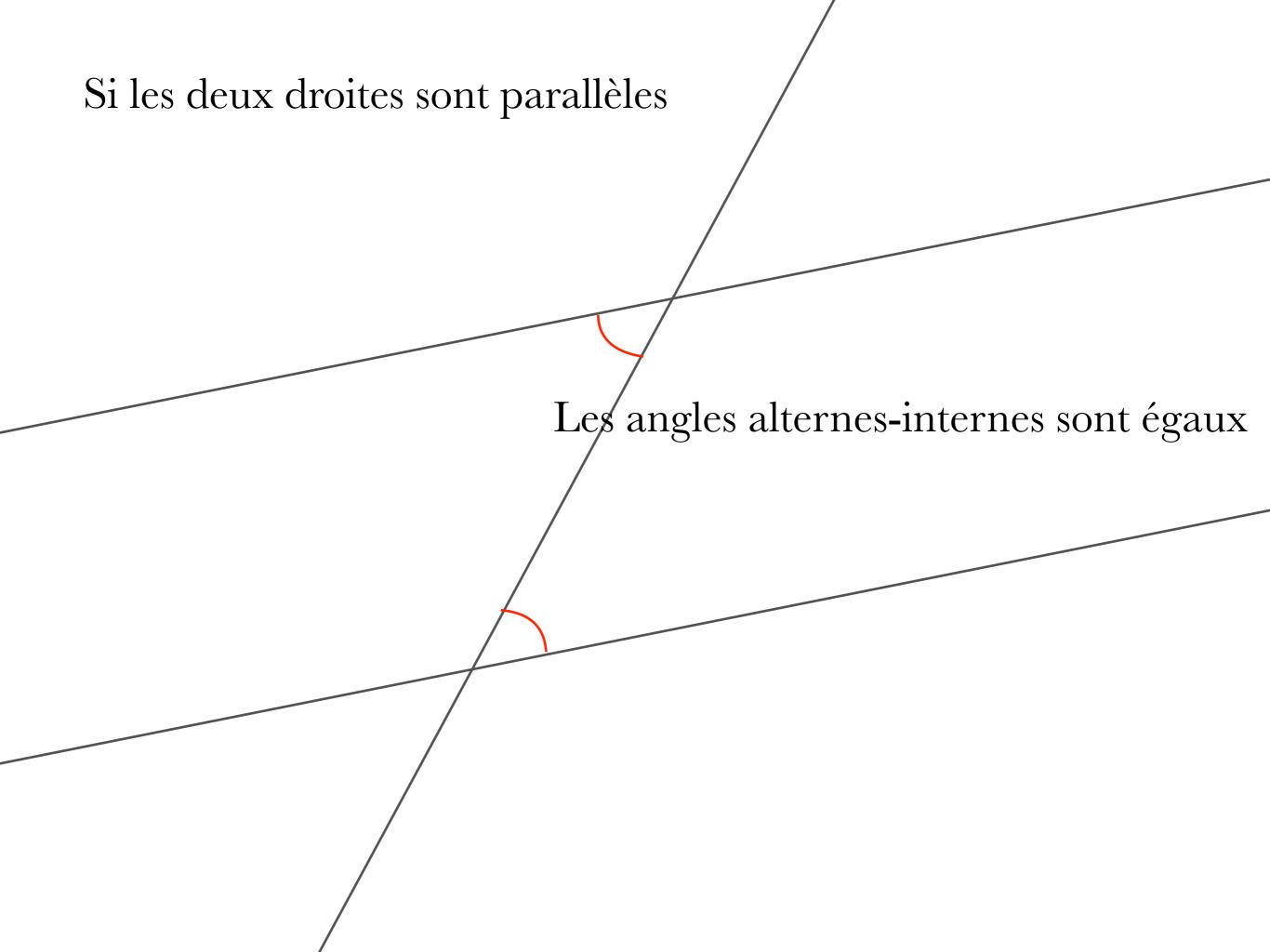


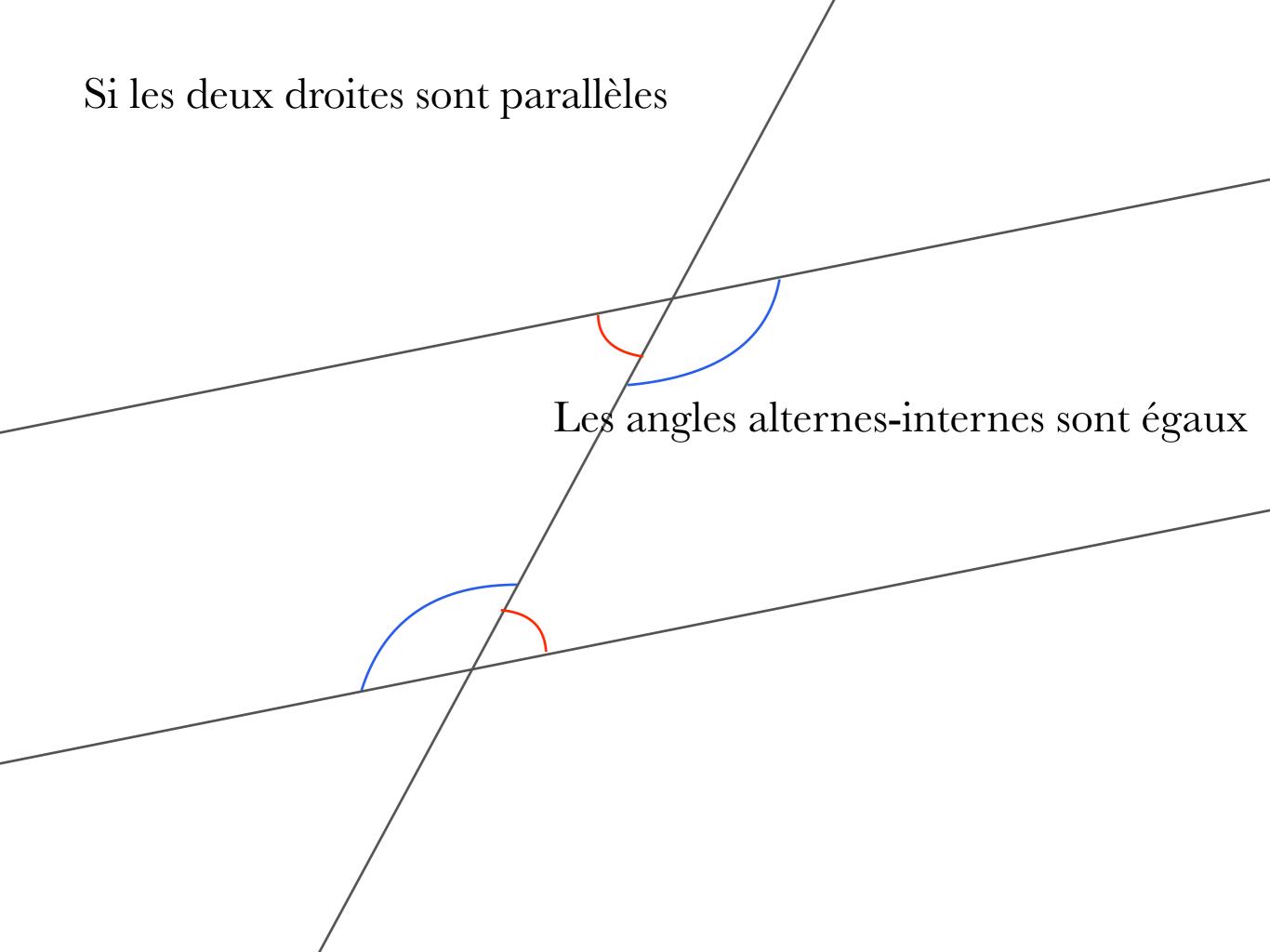


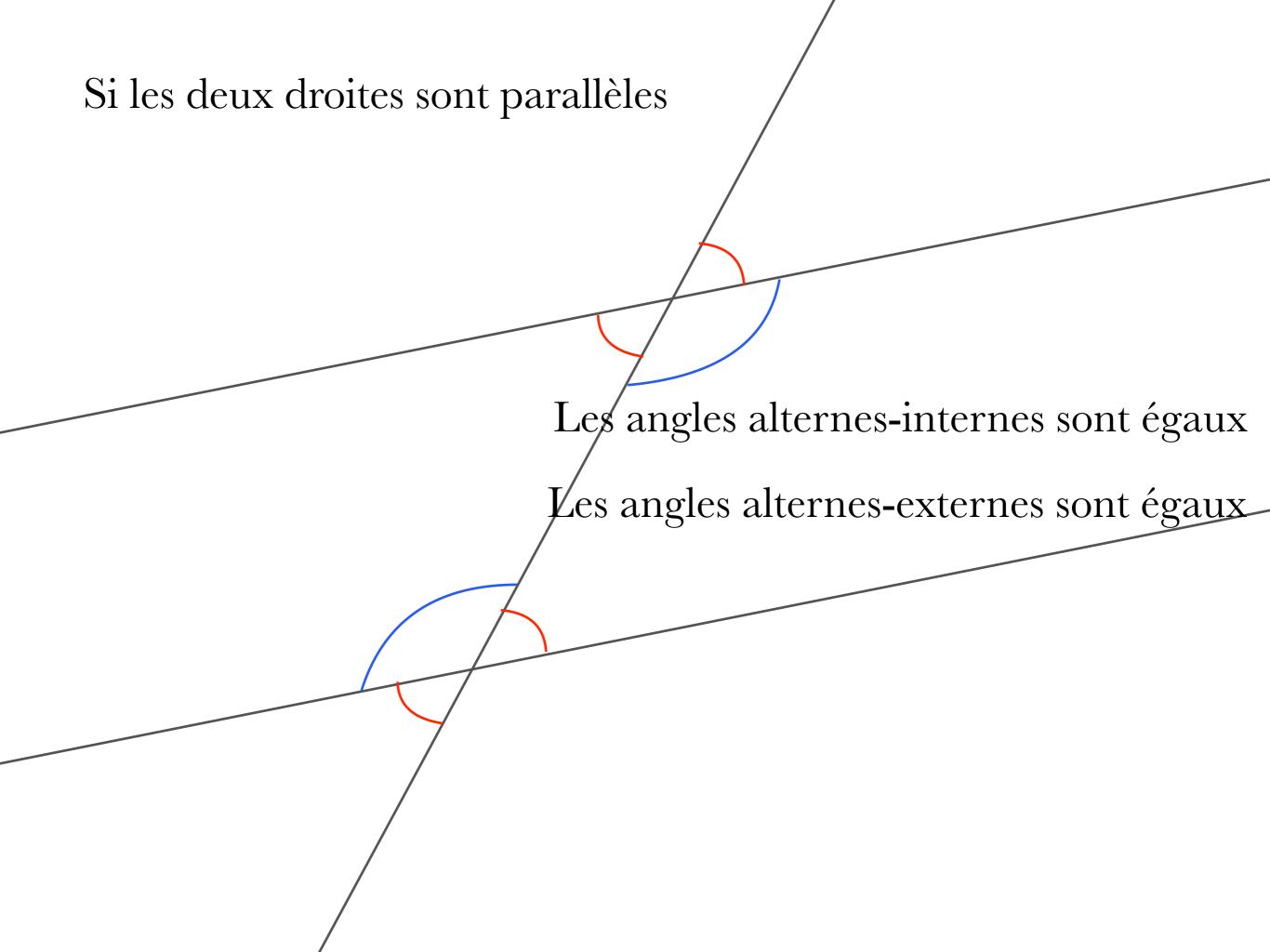


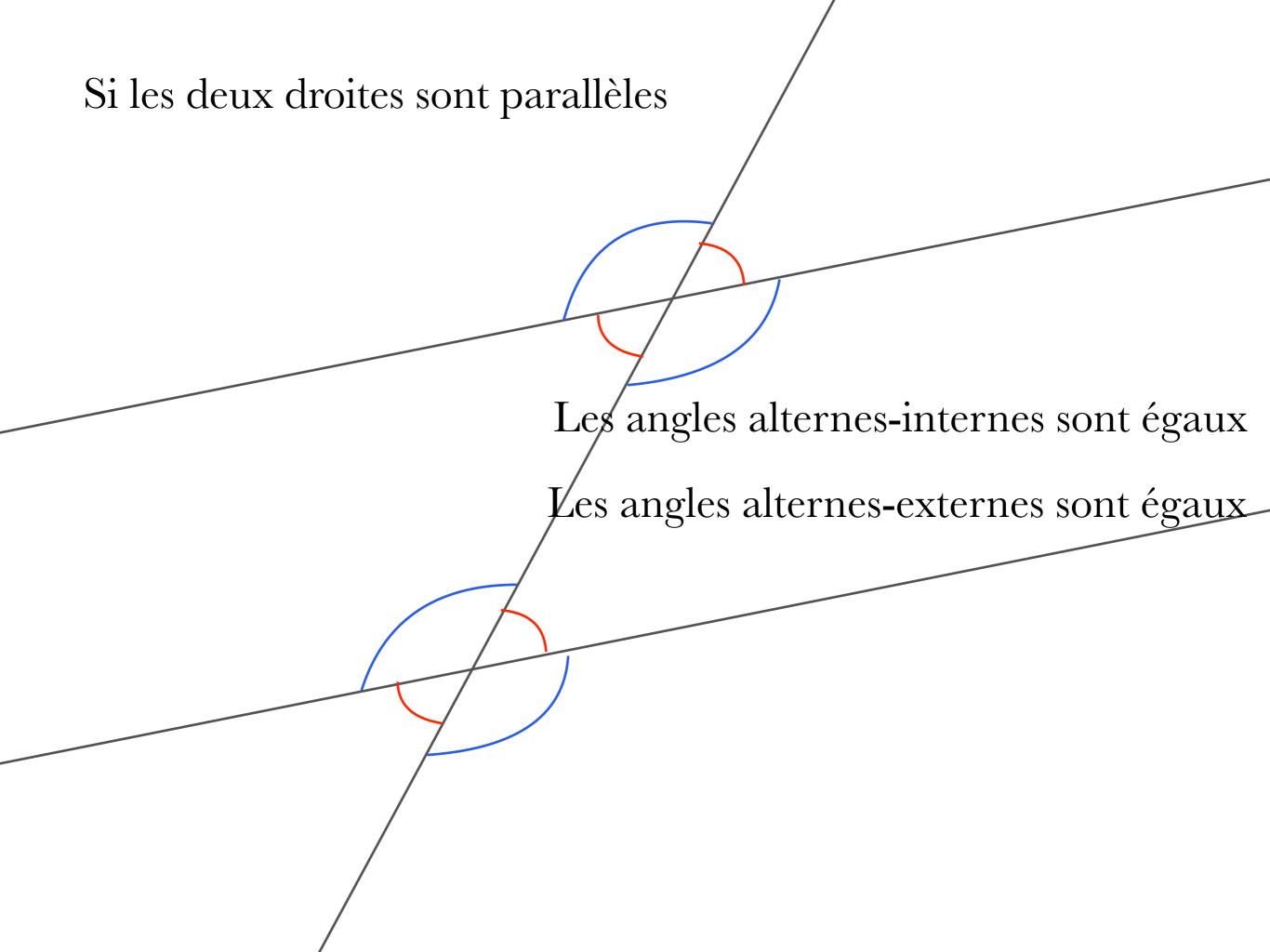


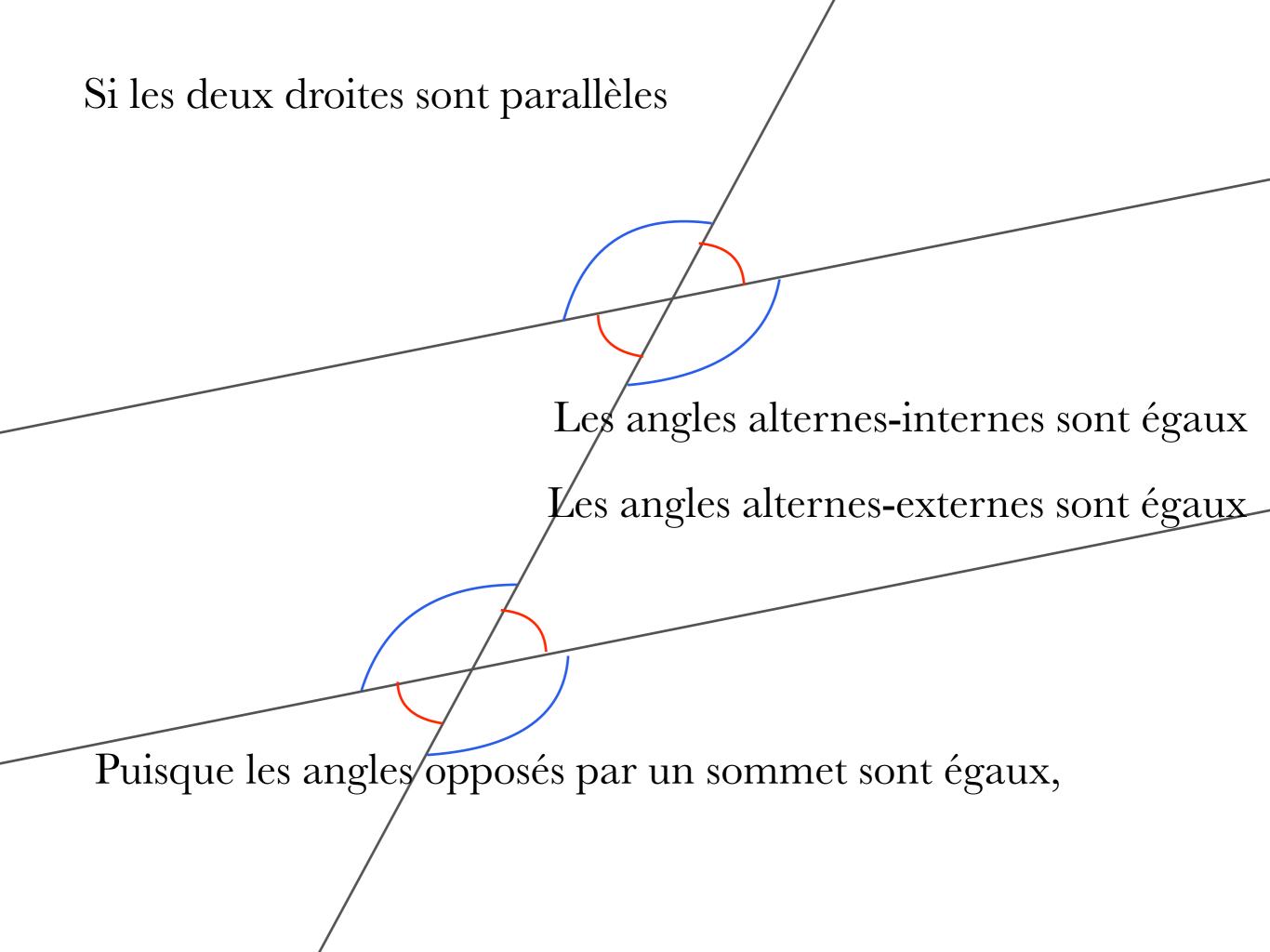


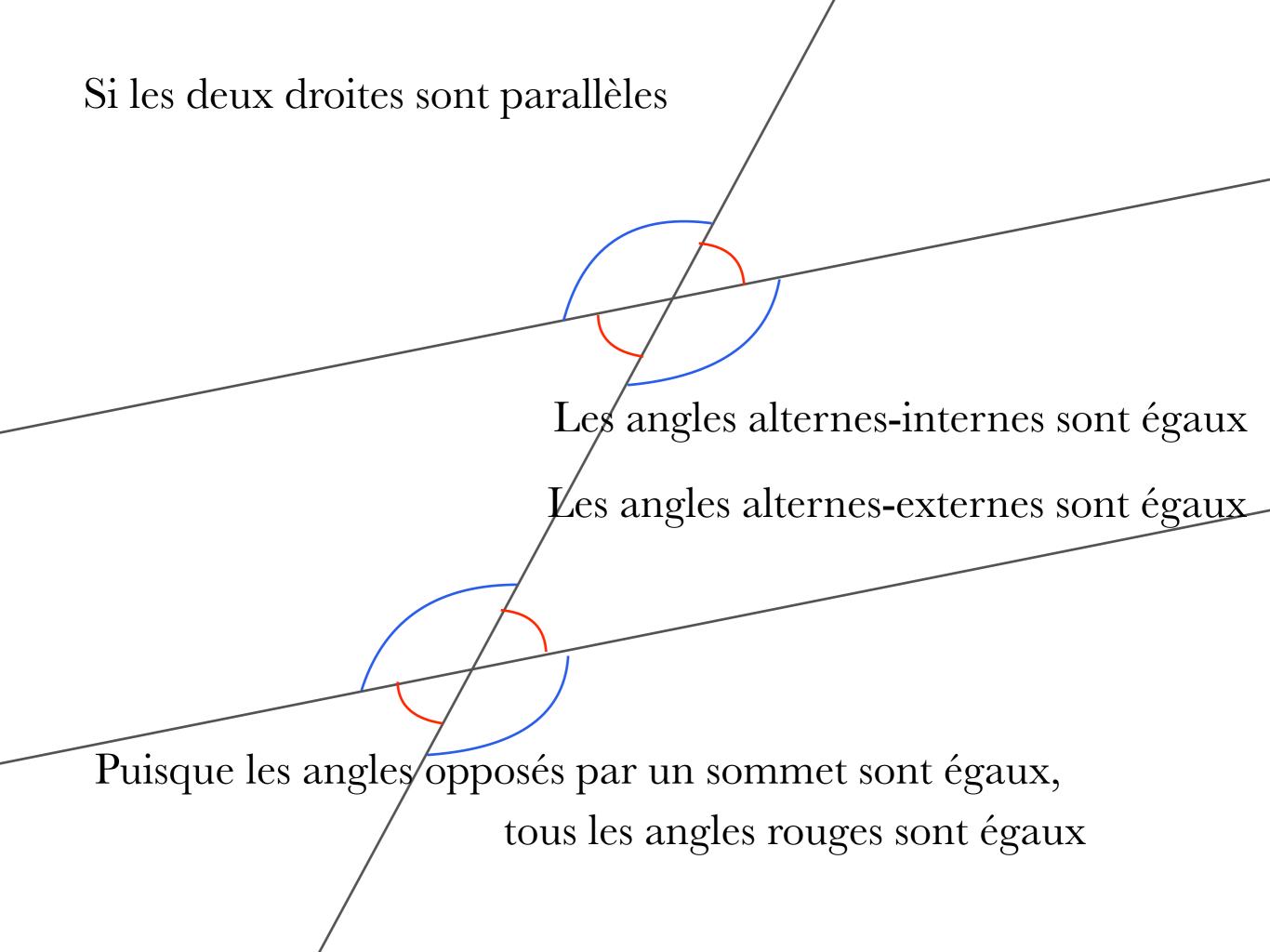


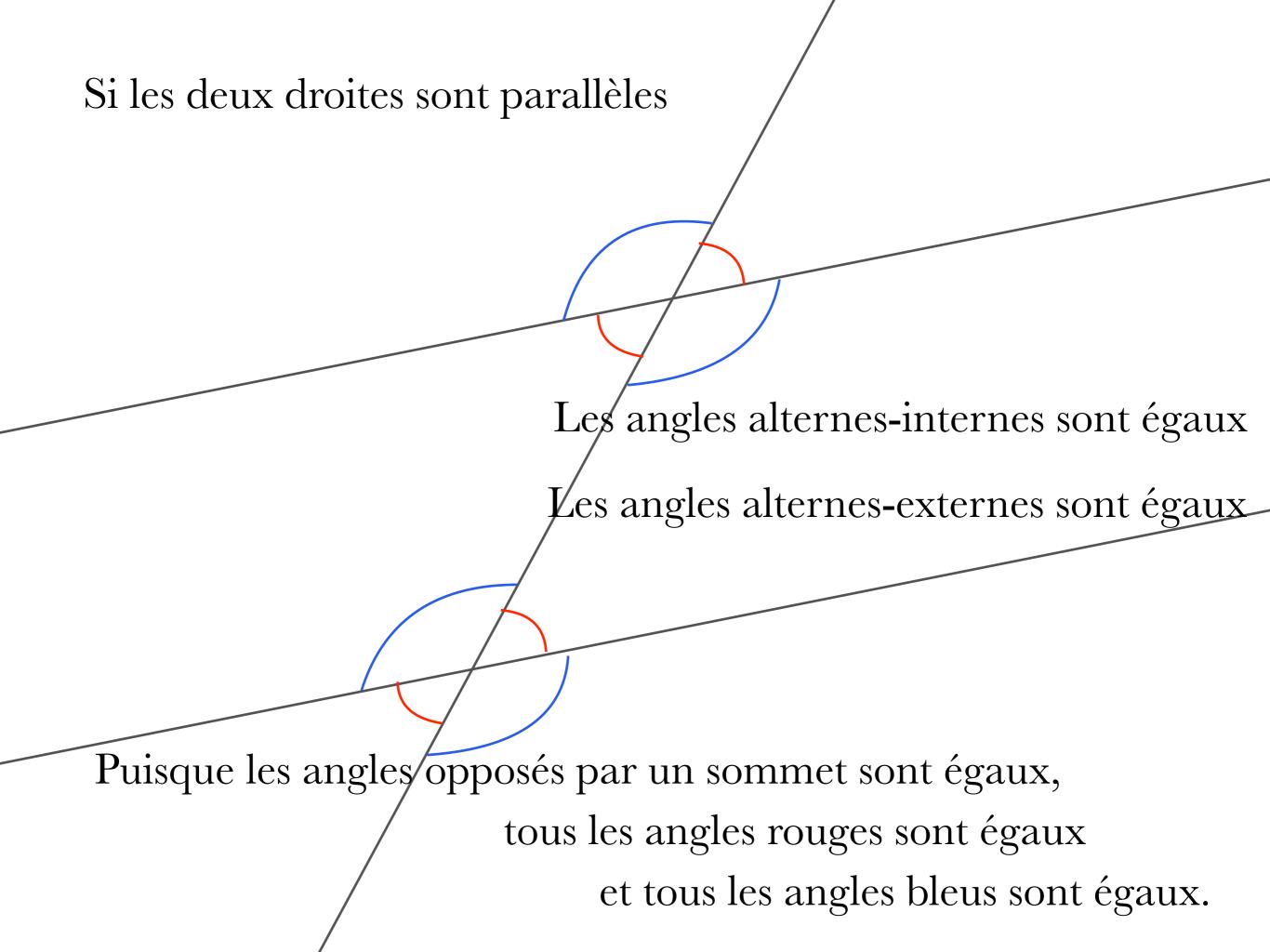








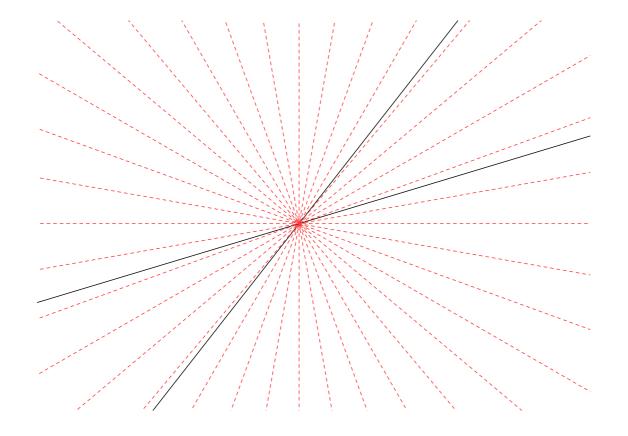


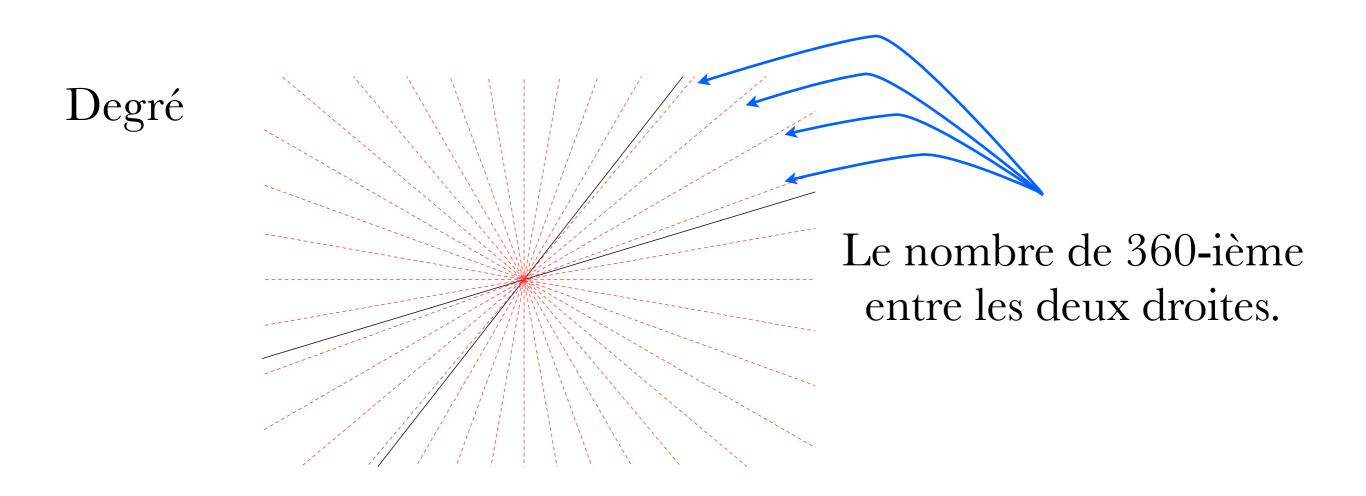


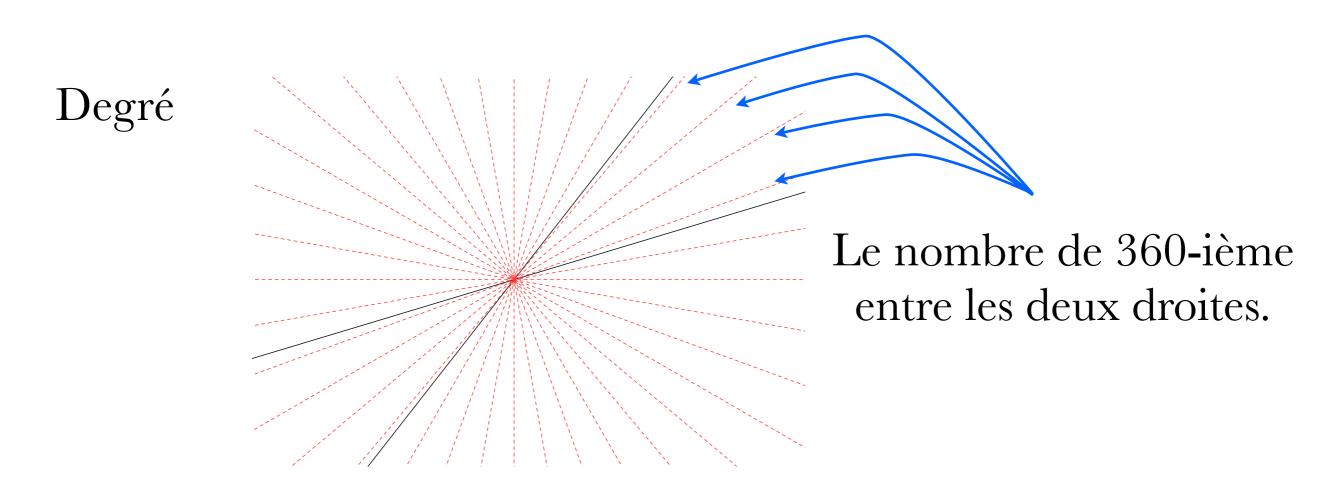
Faites les exercices suivants

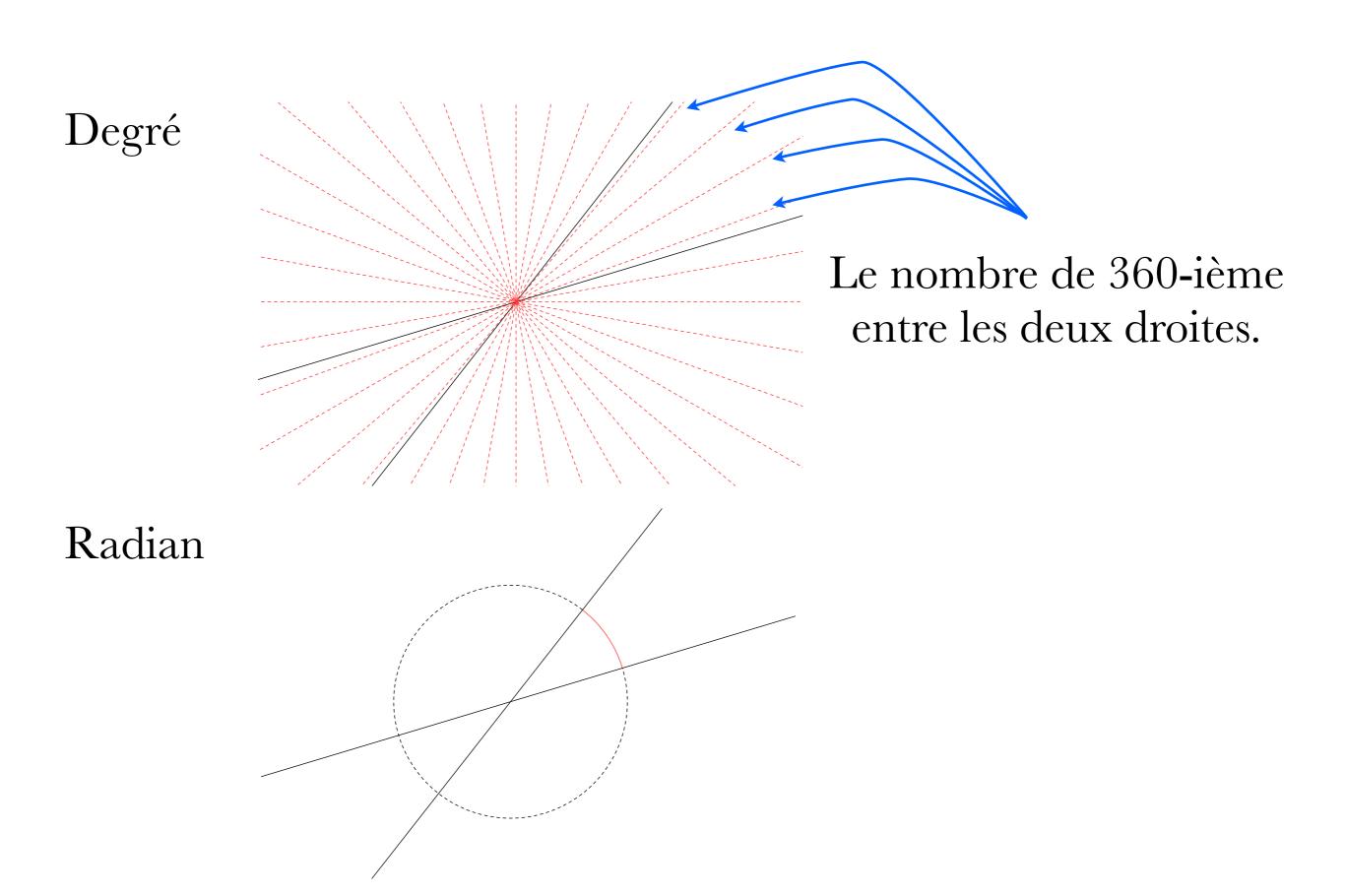
p.418 # 12.1

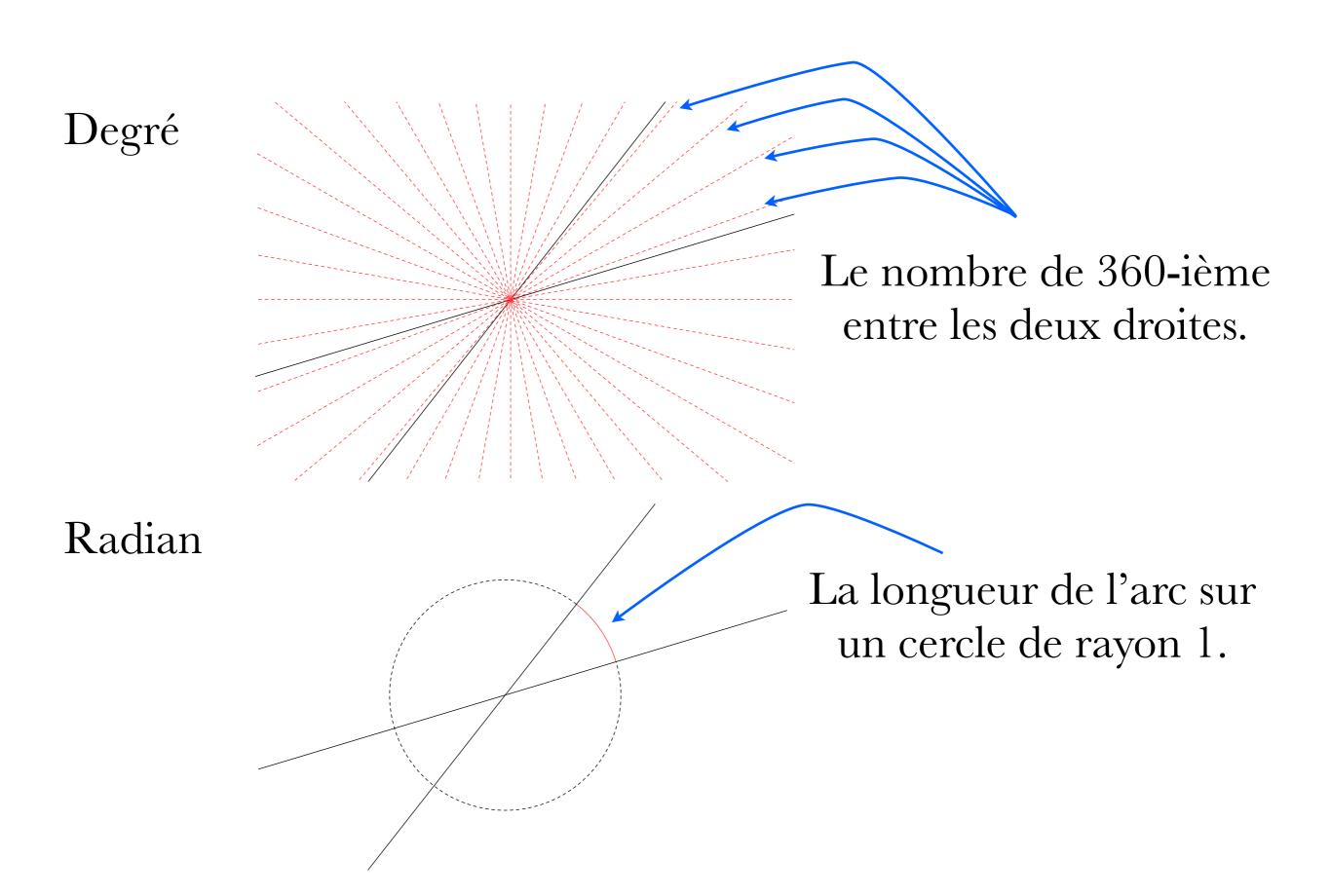
Degré



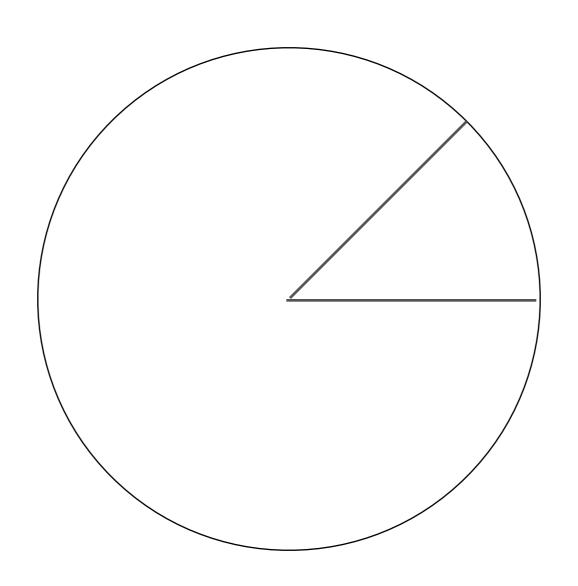






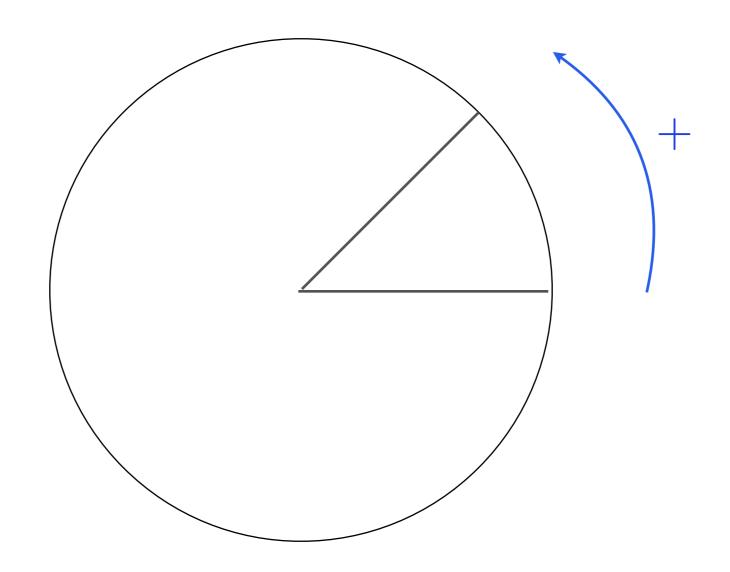


On attribue un signe à un angle



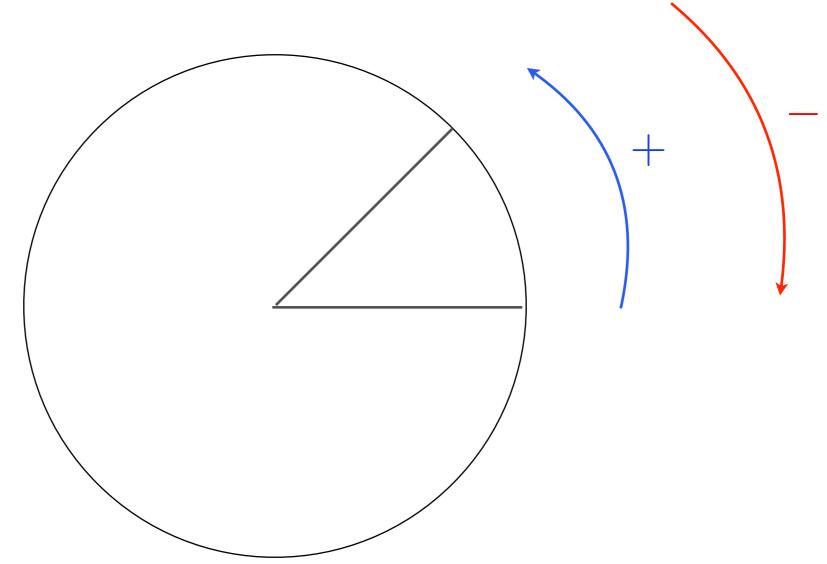
On attribue un signe à un angle

Positif si on tourne dans le sens antihoraire



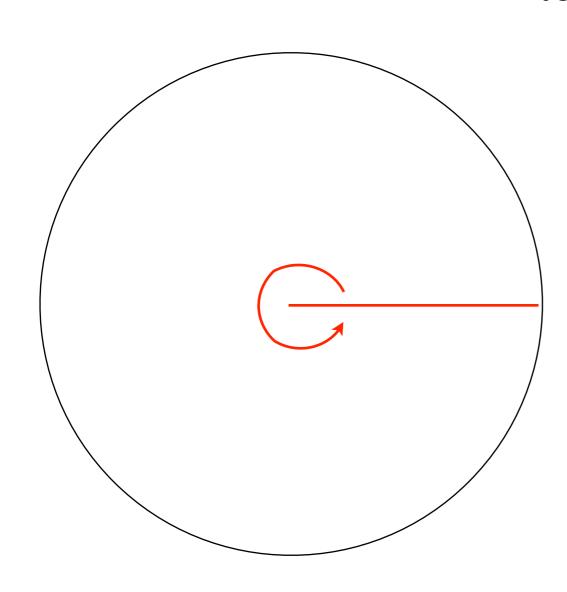
On attribue un signe à un angle

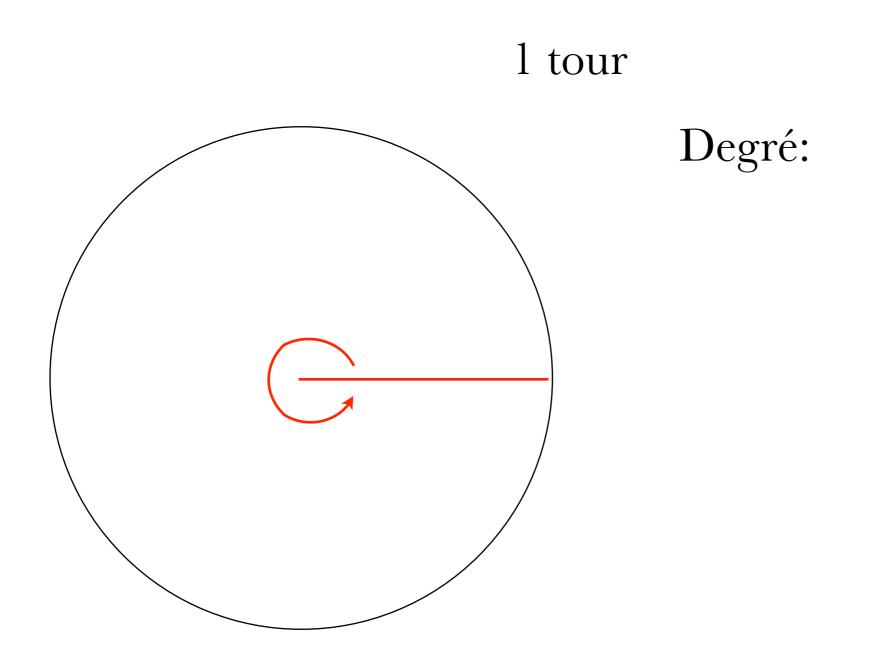
Positif si on tourne dans le sens antihoraire



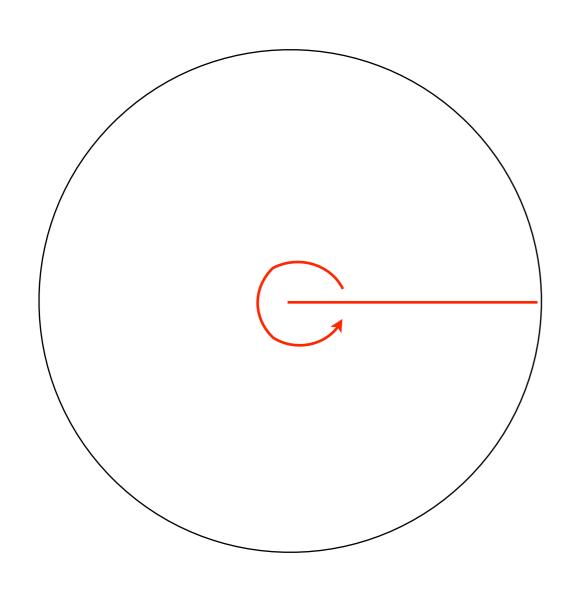
Négatif si on tourne dans le sens horaire

1 tour

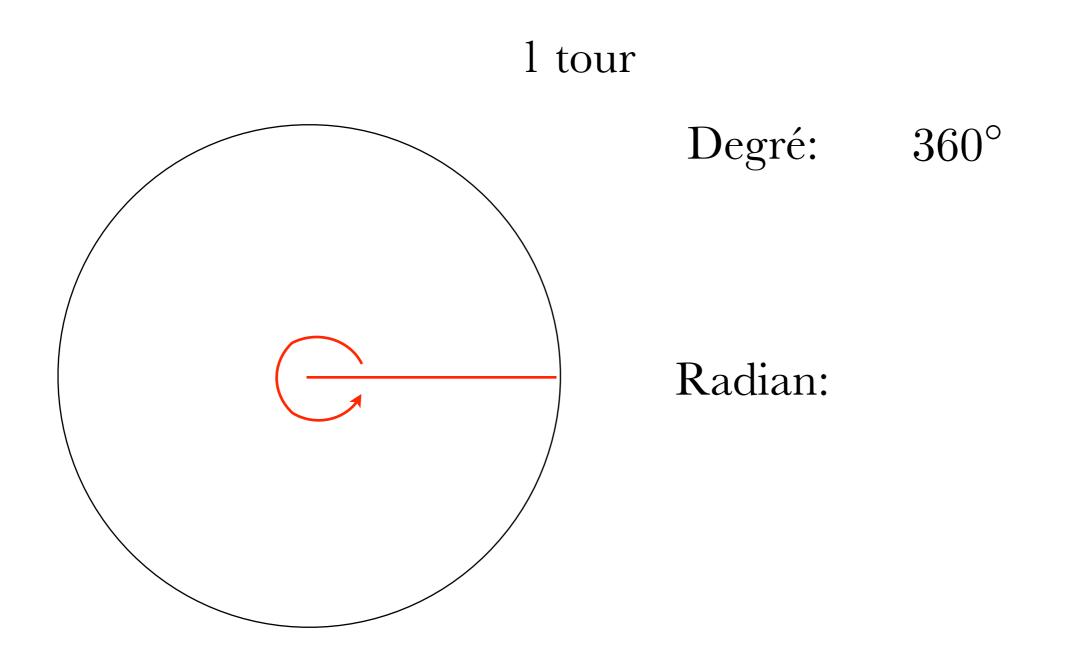




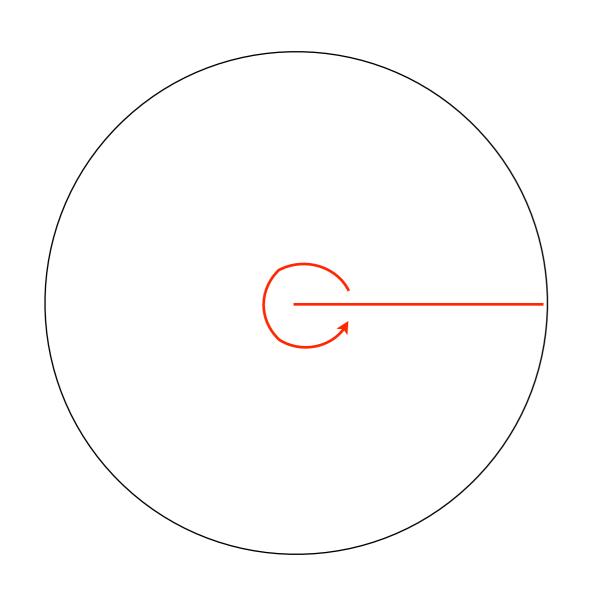
1 tour



Degré: 360°



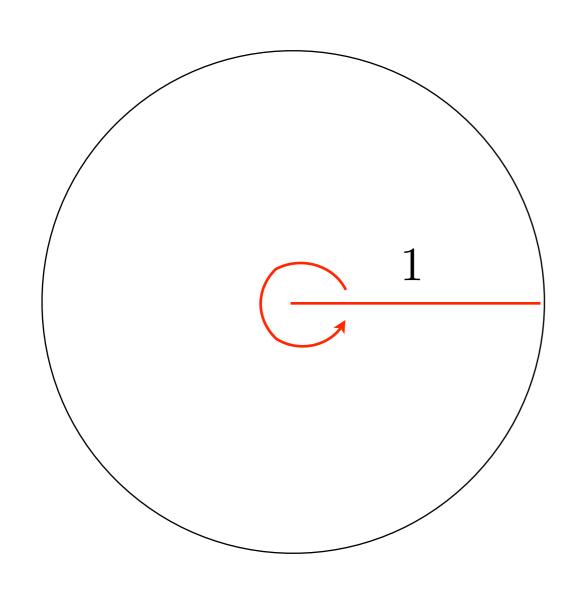
1 tour



Degré: 360°

Radian: $circ = 2\pi r$

1 tour



Degré: 360°

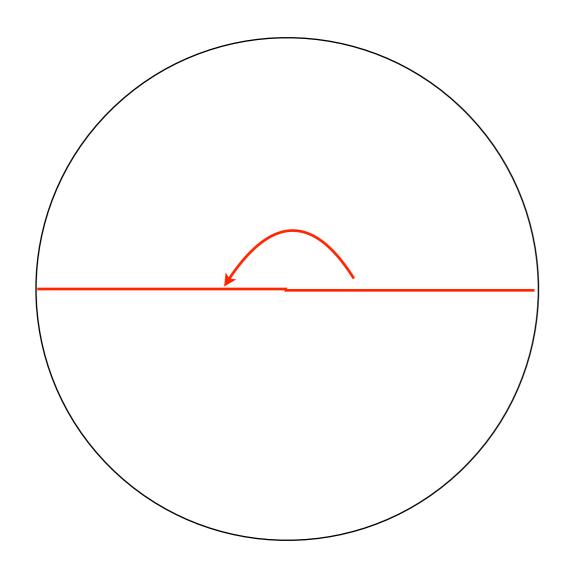
Radian: $circ = 2\pi r$



Degré: 360°

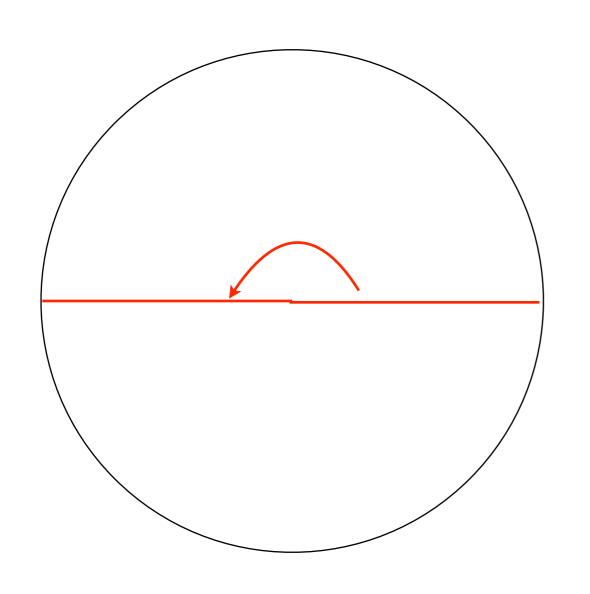
Radian: $circ = 2\pi r = 2\pi$

 $\frac{1}{2}$ tour



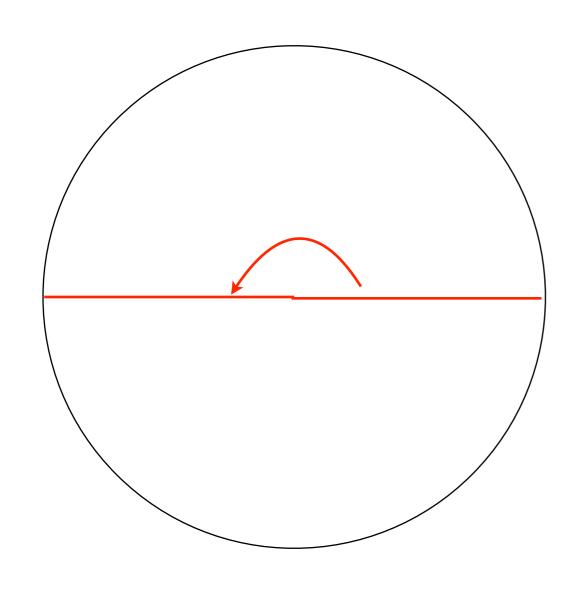
Degré:

$$\frac{1}{2}$$
 tour



Degré:
$$\frac{1}{2} \times 360^{\circ} = 180^{\circ}$$

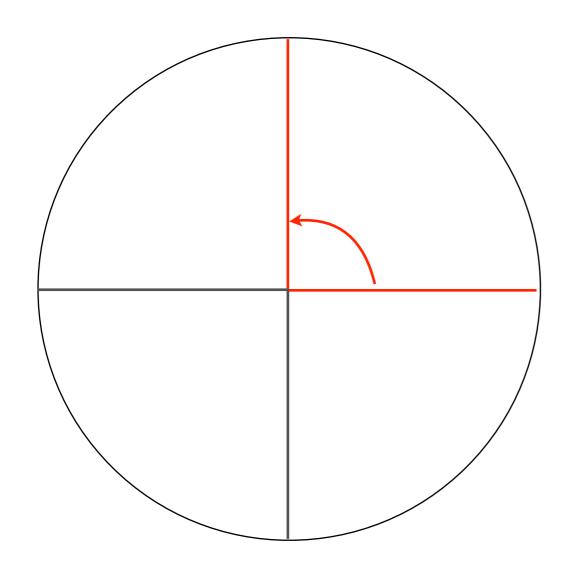
$$\frac{1}{2}$$
 tour



Degré:
$$\frac{1}{2} \times 360^{\circ} = 180^{\circ}$$

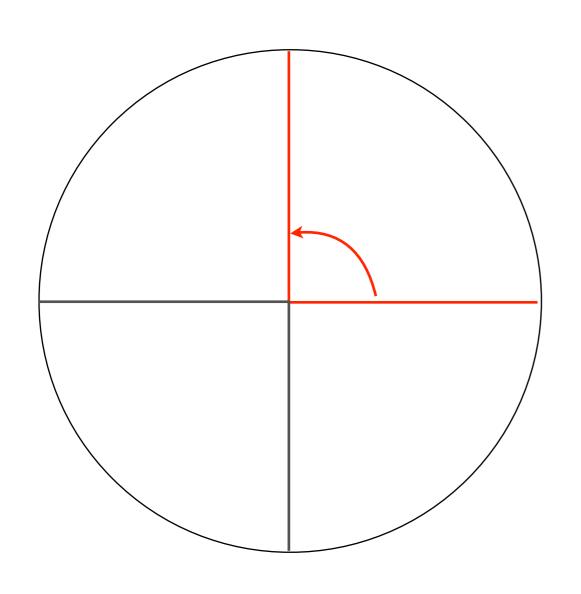
Radian:
$$\frac{1}{2} \times 2\pi = \pi$$

 $\frac{1}{4}$ tour



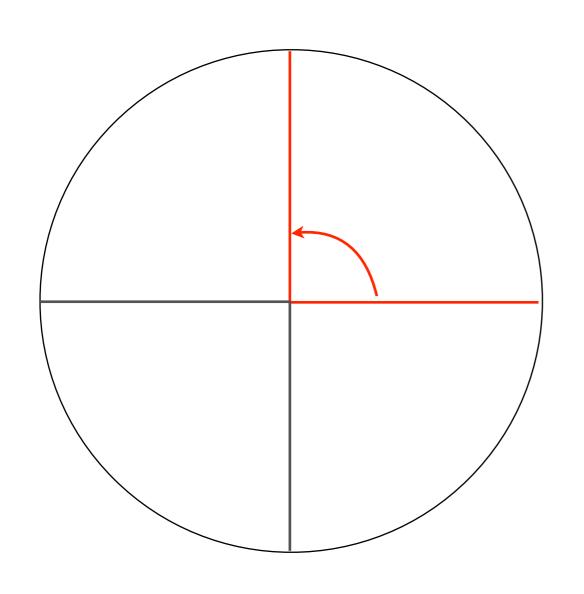
Degré:

$$\frac{1}{4}$$
 tour



Degré:
$$\frac{1}{4} \times 360^{\circ} = 90^{\circ}$$

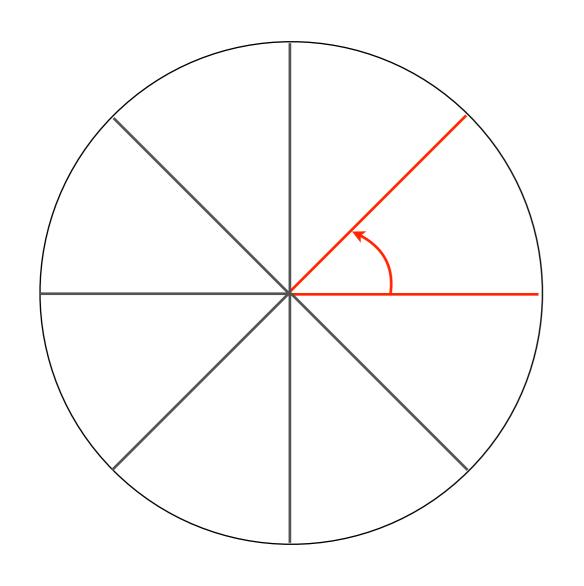
$$\frac{1}{4}$$
 tour



Degré:
$$\frac{1}{4} \times 360^{\circ} = 90^{\circ}$$

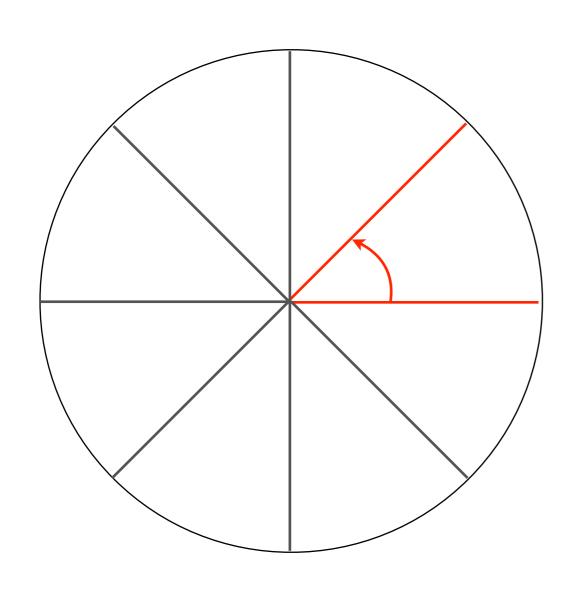
Radian:
$$\frac{1}{4} \times 2\pi = \frac{\pi}{2}$$

 $\frac{1}{8}$ tour



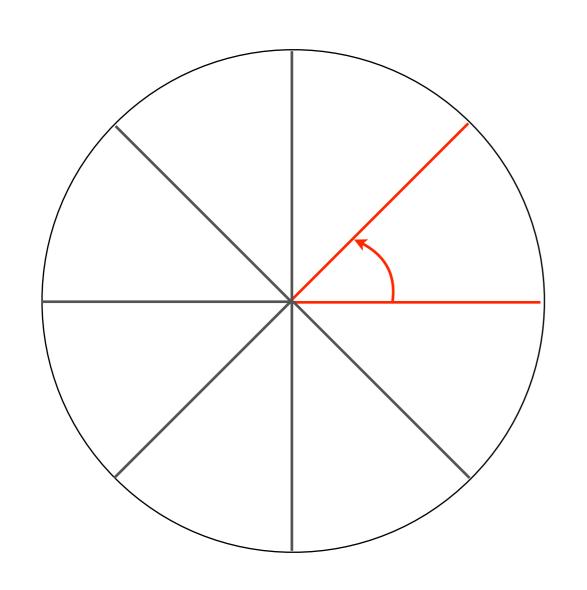
Degré:

$$\frac{1}{8}$$
 tour



Degré: $\frac{1}{8} \times 360^{\circ} = 45^{\circ}$

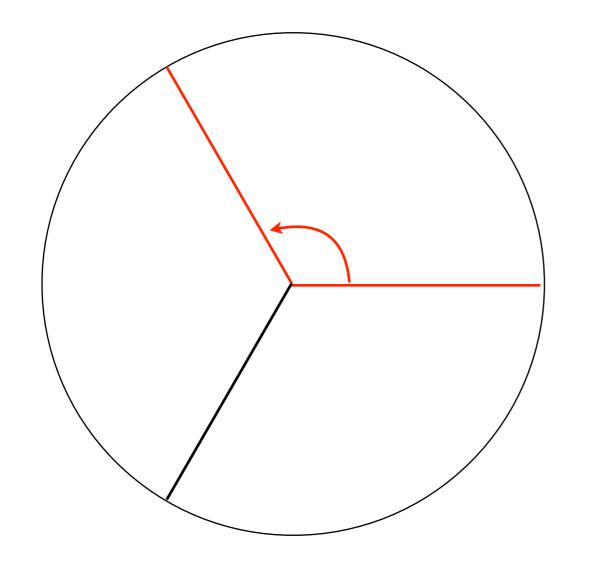
$$\frac{1}{8}$$
 tour



Degré:
$$\frac{1}{8} \times 360^{\circ} = 45^{\circ}$$

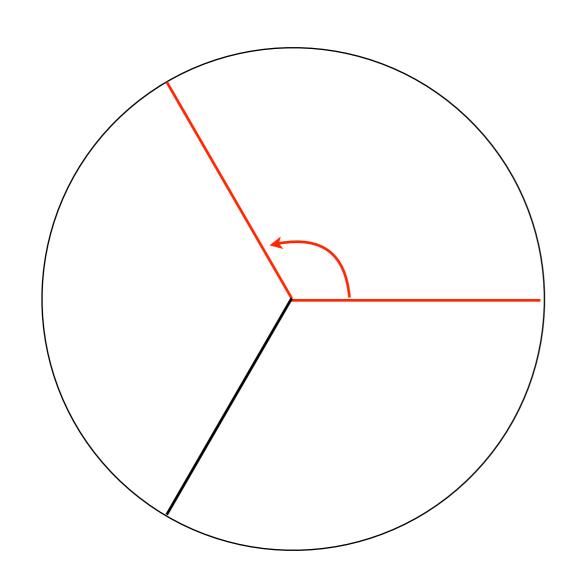
Radian:
$$\frac{1}{8} \times 2\pi = \frac{\pi}{4}$$

 $\frac{1}{3}$ tour



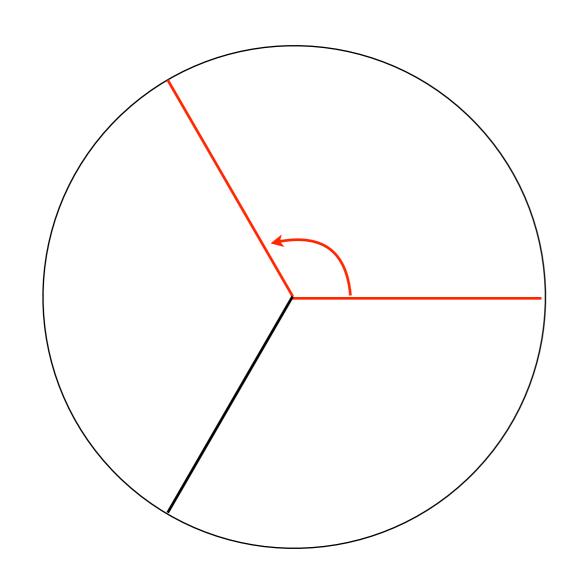
Degré:

$$\frac{1}{3}$$
 tour



Degré:
$$\frac{1}{3} \times 360^{\circ} = 120^{\circ}$$

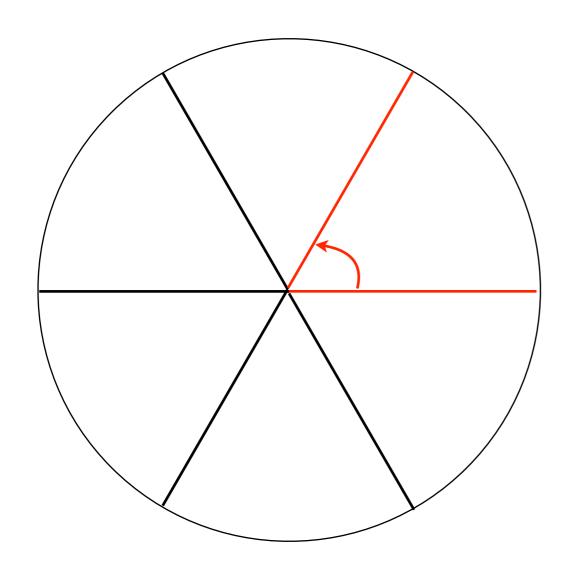
$$\frac{1}{3}$$
 tour



Degré:
$$\frac{1}{3} \times 360^{\circ} = 120^{\circ}$$

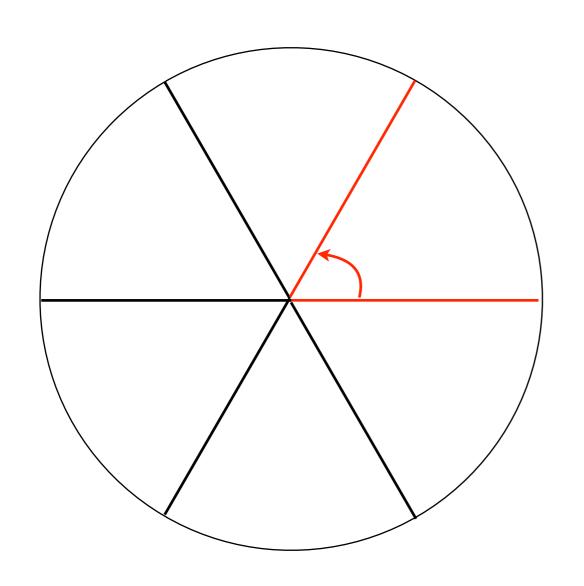
Radian:
$$\frac{1}{3} \times 2\pi = \frac{2\pi}{3}$$

 $\frac{1}{6}$ tour



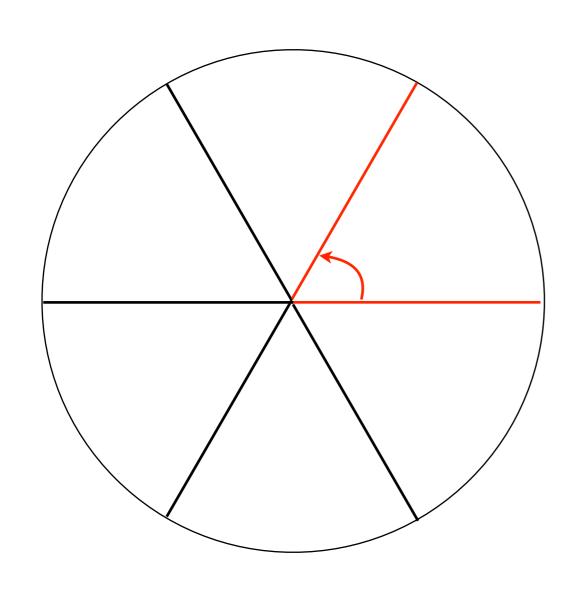
Degré:

$$\frac{1}{6}$$
 tour



Degré:
$$\frac{1}{6} \times 360^{\circ} = 60^{\circ}$$

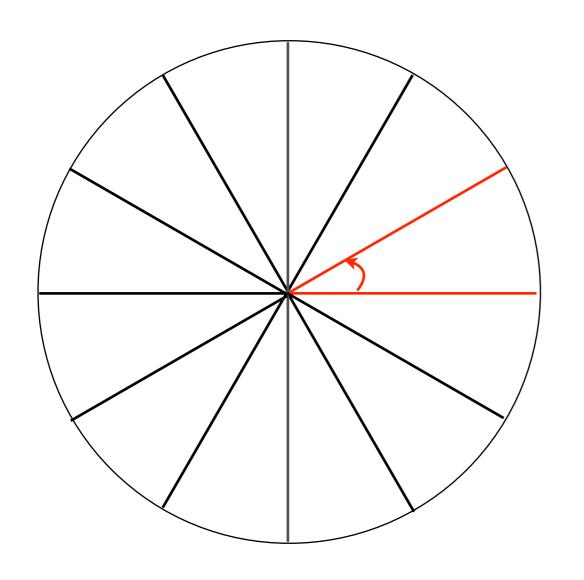
$$\frac{1}{6}$$
 tour



Degré:
$$\frac{1}{6} \times 360^{\circ} = 60^{\circ}$$

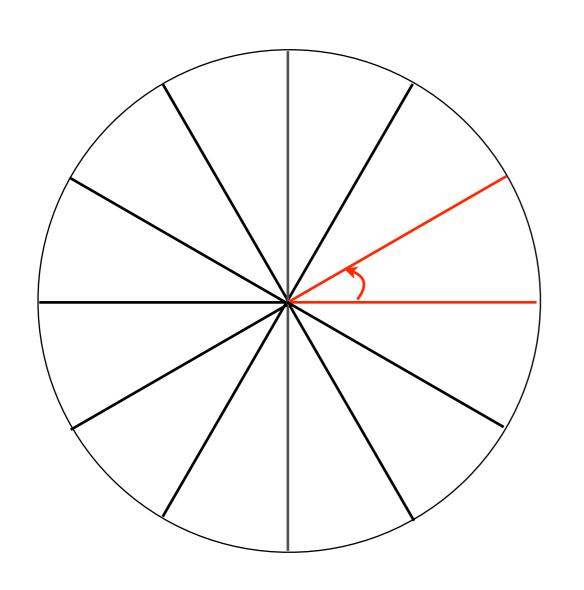
Radian:
$$\frac{1}{6} \times 2\pi = \frac{\pi}{3}$$

 $\frac{1}{12}$ tour



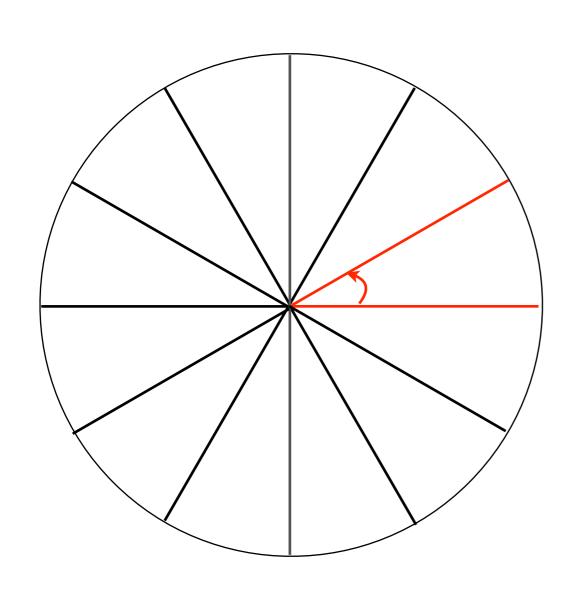
Degré:

$$\frac{1}{12}$$
 tour



Degré:
$$\frac{1}{12} \times 360^{\circ} = 30^{\circ}$$

$$\frac{1}{12}$$
 tour



Degré:
$$\frac{1}{12} \times 360^{\circ} = 30^{\circ}$$

Radian:
$$\frac{1}{12} \times 2\pi = \frac{\pi}{6}$$

$$\theta_{\rm deg} = p \times 360$$

$$\theta_{\text{deg}} = p \times 360$$
 $\theta_{\text{rad}} = p \times 2\pi$

$$\theta_{\rm deg} = p \times 360$$
 $\theta_{\rm rad} = p \times 2\pi$

$$\frac{\theta_{\text{deg}}}{360} = p$$

$$\theta_{\text{deg}} = p \times 360$$
 $\theta_{\text{rad}} = p \times 2\pi$
$$\frac{\theta_{\text{deg}}}{360} = p$$

$$\frac{\theta_{\text{rad}}}{2\pi} = p$$

$$\theta_{\text{deg}} = p \times 360$$
 $\theta_{\text{rad}} = p \times 2\pi$
$$\frac{\theta_{\text{deg}}}{360} = p$$

$$\frac{\theta_{\text{rad}}}{2\pi} = p$$

$$\frac{\theta_{\text{deg}}}{360} = \frac{\theta_{\text{rad}}}{2\pi}$$

$$\theta_{\text{deg}} = p \times 360$$
 $\theta_{\text{rad}} = p \times 2\pi$ $\frac{\theta_{\text{deg}}}{360} = p$ $\frac{\theta_{\text{rad}}}{2\pi} = p$

$$\frac{\theta_{\text{deg}}}{360} = \frac{\theta_{\text{rad}}}{2\pi}$$

$$\theta_{\rm deg} = \frac{\theta_{\rm rad} \times 360}{2\pi}$$

$$\theta_{\text{deg}} = p \times 360$$
 $\theta_{\text{rad}} = p \times 2\pi$
$$\frac{\theta_{\text{deg}}}{360} = p$$

$$\frac{\theta_{\text{rad}}}{2\pi} = p$$

$$\frac{\theta_{\text{deg}}}{360} = \frac{\theta_{\text{rad}}}{2\pi}$$

$$\theta_{\rm deg} = \frac{\theta_{\rm rad} \times 360}{2\pi}$$

$$\theta_{\rm rad} = \frac{\theta_{\rm deg} \times 2\pi}{360}$$

$$\theta_{\text{deg}} = p \times 360$$
 $\theta_{\text{rad}} = p \times 2\pi$
$$\frac{\theta_{\text{deg}}}{360} = p$$

$$\frac{\theta_{\text{rad}}}{2\pi} = p$$

$$\frac{\theta_{\text{deg}}}{360} = \frac{\theta_{\text{rad}}}{2\pi}$$

$$\theta_{\text{deg}} = \frac{\theta_{\text{rad}} \times 360}{2\pi} = \frac{\theta_{\text{rad}} \times 180}{\pi}$$

$$\theta_{\rm rad} = \frac{\theta_{\rm deg} \times 2\pi}{360}$$

$$\theta_{\text{deg}} = p \times 360$$
 $\theta_{\text{rad}} = p \times 2\pi$ $\frac{\theta_{\text{deg}}}{360} = p$ $\frac{\theta_{\text{rad}}}{2\pi} = p$

$$\frac{\theta_{\text{deg}}}{360} = \frac{\theta_{\text{rad}}}{2\pi}$$

$$\theta_{\text{deg}} = \frac{\theta_{\text{rad}} \times 360}{2\pi} = \frac{\theta_{\text{rad}} \times 180}{\pi}$$

$$\theta_{\rm rad} = \frac{\theta_{\rm deg} \times 2\pi}{360} = \frac{\theta_{\rm deg} \times \pi}{180}$$

T

$$\theta_{\rm rad} = \frac{150^{\circ} \times \pi}{180^{\circ}}$$

$$\theta_{\rm rad} = \frac{150^{\circ} \times \pi}{180^{\circ}} = \frac{15}{18} \times \pi$$

$$\theta_{\rm rad} = \frac{150^{\circ} \times \pi}{180^{\circ}} = \frac{15}{18} \times \pi = \frac{5}{6} \times \pi$$

$$\theta_{\rm rad} = \frac{150^{\circ} \times \pi}{180^{\circ}} = \frac{15}{18} \times \pi = \frac{5}{6} \times \pi = \frac{5\pi}{6}$$

$$\theta_{\rm rad} = \frac{150^{\circ} \times \pi}{180^{\circ}} = \frac{15}{18} \times \pi = \frac{5}{6} \times \pi = \frac{5\pi}{6}$$

$$\theta_{\rm rad} = \frac{150^{\circ} \times \pi}{180^{\circ}} = \frac{15}{18} \times \pi = \frac{5}{6} \times \pi = \frac{5\pi}{6}$$

$$\theta_{\rm deg} = \frac{\frac{4\pi}{3} \times 180^{\circ}}{\pi}$$

$$\theta_{\rm rad} = \frac{150^{\circ} \times \pi}{180^{\circ}} = \frac{15}{18} \times \pi = \frac{5}{6} \times \pi = \frac{5\pi}{6}$$

$$\theta_{\text{deg}} = \frac{\frac{4\pi}{3} \times 180^{\circ}}{\pi} = \frac{4\pi}{3} \times \frac{1}{\pi} \times 180^{\circ}$$

$$\theta_{\rm rad} = \frac{150^{\circ} \times \pi}{180^{\circ}} = \frac{15}{18} \times \pi = \frac{5}{6} \times \pi = \frac{5\pi}{6}$$

$$\theta_{\text{deg}} = \frac{\frac{4\pi}{3} \times 180^{\circ}}{\pi} = \frac{4\pi}{3} \times \frac{1}{\pi} \times 180^{\circ}$$

$$=\frac{4\times180^{\circ}}{3}$$

$$\theta_{\rm rad} = \frac{150^{\circ} \times \pi}{180^{\circ}} = \frac{15}{18} \times \pi = \frac{5}{6} \times \pi = \frac{5\pi}{6}$$

$$\theta_{\text{deg}} = \frac{\frac{4\pi}{3} \times 180^{\circ}}{\pi} = \frac{4\pi}{3} \times \frac{1}{\pi} \times 180^{\circ}$$

$$=\frac{4\times180^{\circ}}{3}$$

$$=4\times60^{\circ}$$

$$\theta_{\rm rad} = \frac{150^{\circ} \times \pi}{180^{\circ}} = \frac{15}{18} \times \pi = \frac{5}{6} \times \pi = \frac{5\pi}{6}$$

$$\theta_{\text{deg}} = \frac{\frac{4\pi}{3} \times 180^{\circ}}{\pi} = \frac{4\pi}{3} \times \frac{1}{\pi} \times 180^{\circ}$$

$$=\frac{4\times180^{\circ}}{3}$$

$$=4\times60^{\circ}$$

$$= 240^{\circ}$$

Faites les exercices suivants

30 à 35

Théorème

La somme des angles internes d'un triangle est l'angle plat.

Théorème

La somme des angles internes d'un triangle est l'angle plat.

Preuve:

La somme des angles internes d'un triangle est l'angle plat.

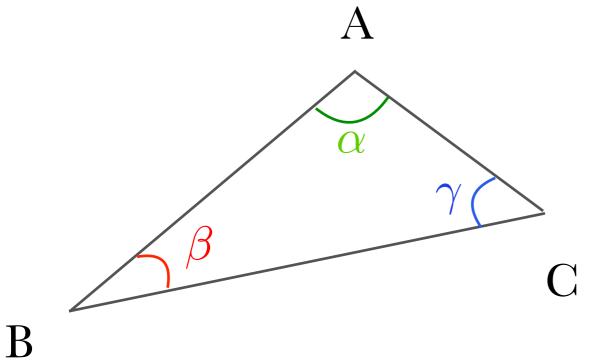
Preuve:

Prenons un triangle quelconque.

La somme des angles internes d'un triangle est l'angle plat.

Preuve:

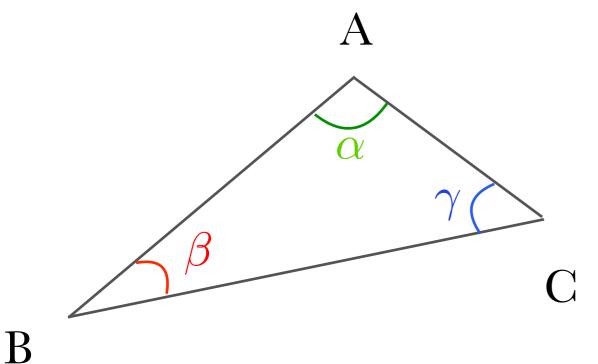
Prenons un triangle quelconque.



La somme des angles internes d'un triangle est l'angle plat.

Preuve:

Prenons un triangle quelconque.

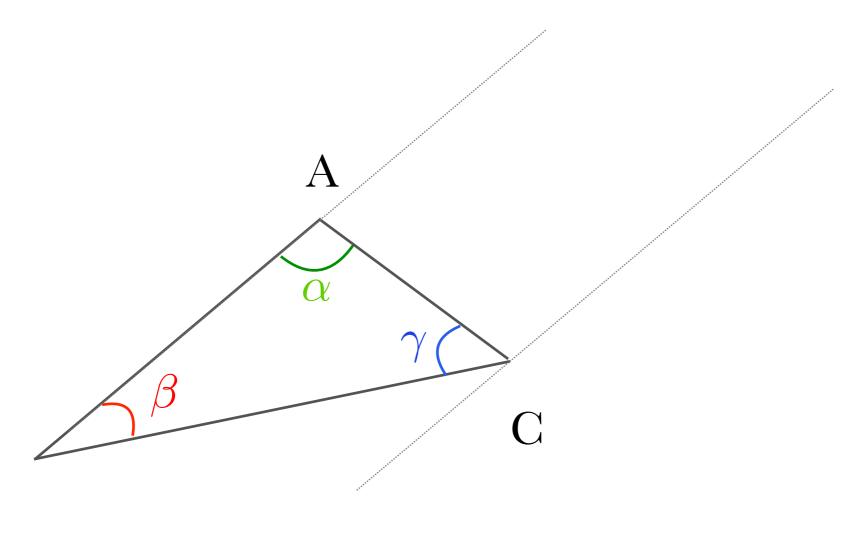


La somme des angles internes d'un triangle est l'angle plat.

Preuve:

Prenons un triangle quelconque.

Traçons une droite parallèle au segment AB et passant par le point C.



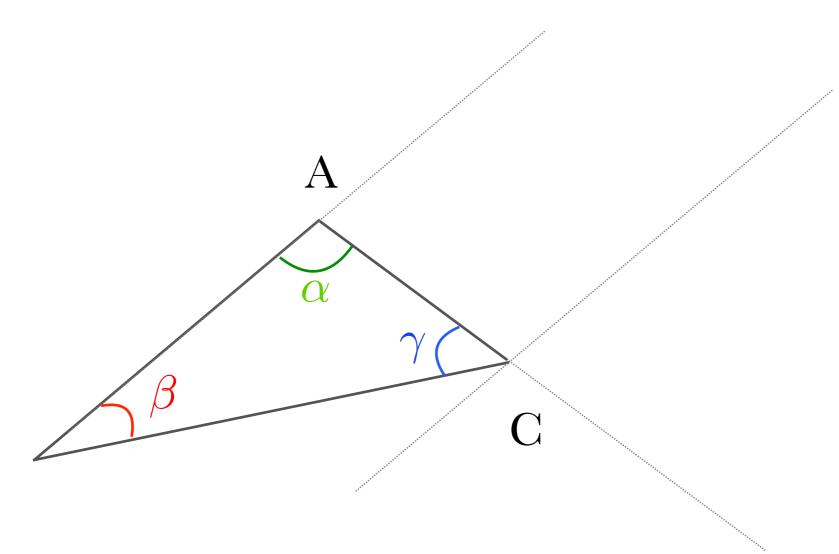
B

La somme des angles internes d'un triangle est l'angle plat.

Preuve:

B

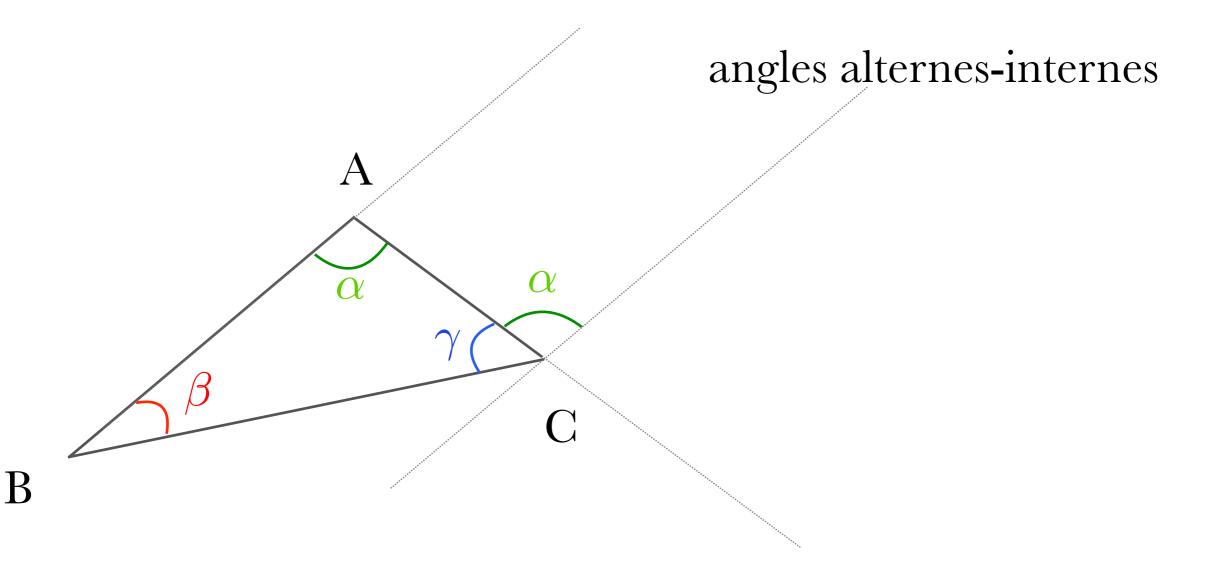
Prenons un triangle quelconque.



La somme des angles internes d'un triangle est l'angle plat.

Preuve:

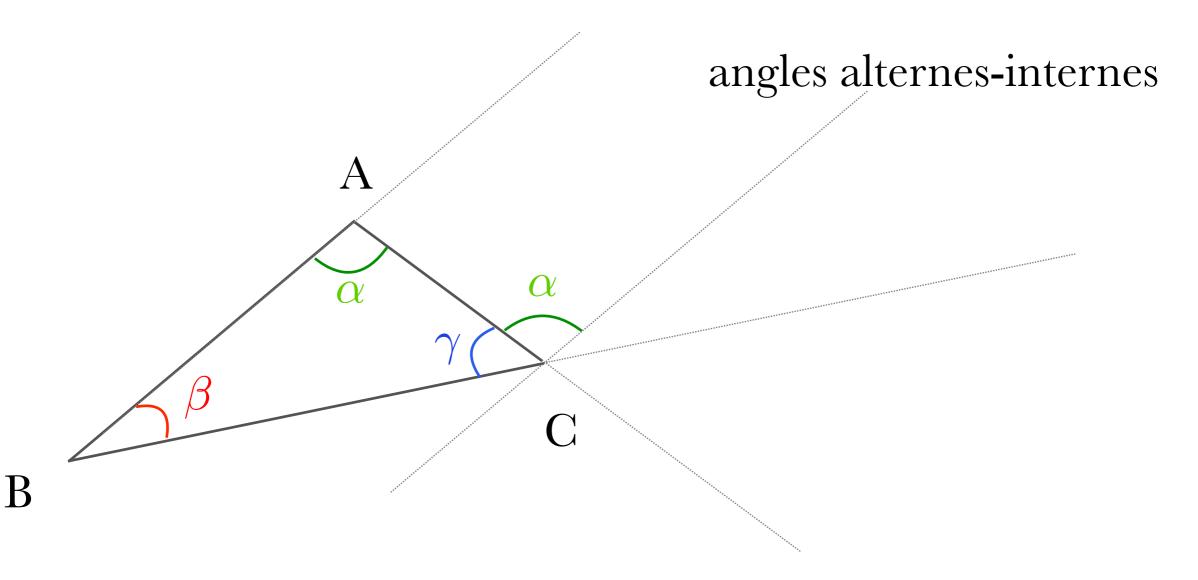
Prenons un triangle quelconque.



La somme des angles internes d'un triangle est l'angle plat.

Preuve:

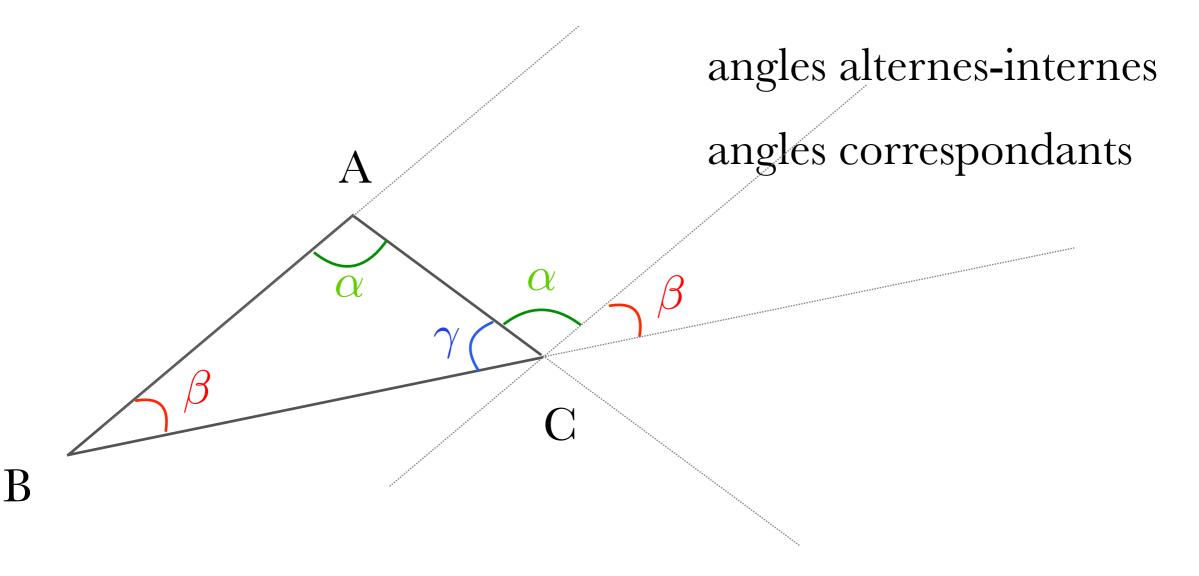
Prenons un triangle quelconque.



La somme des angles internes d'un triangle est l'angle plat.

Preuve:

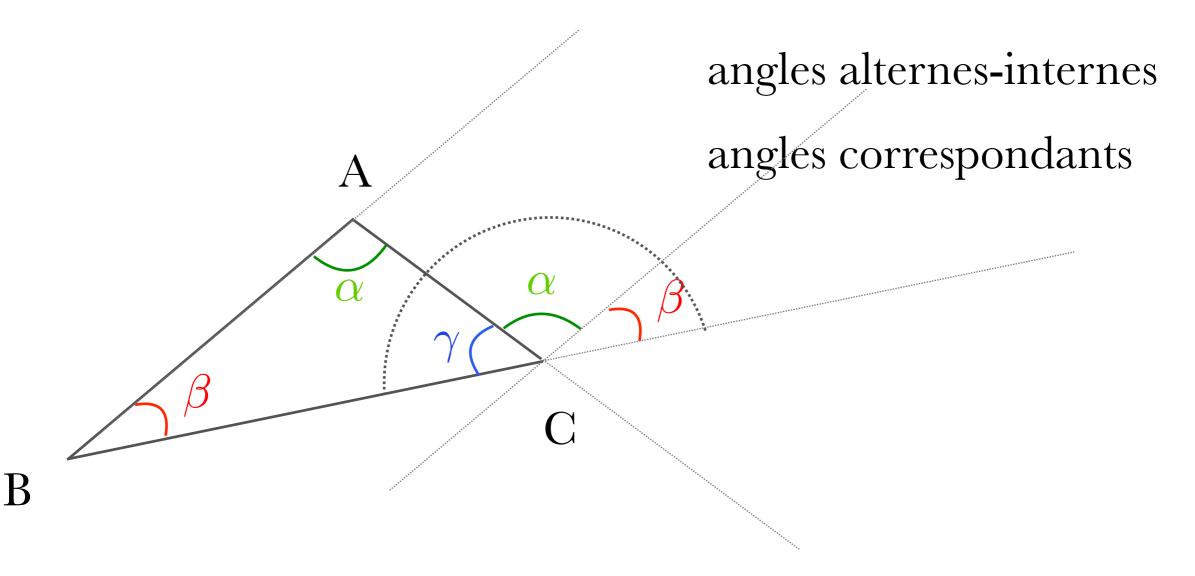
Prenons un triangle quelconque.

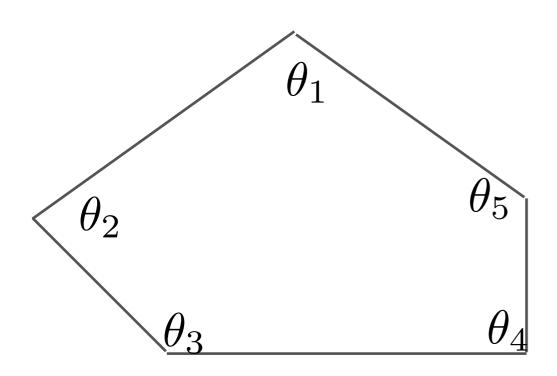


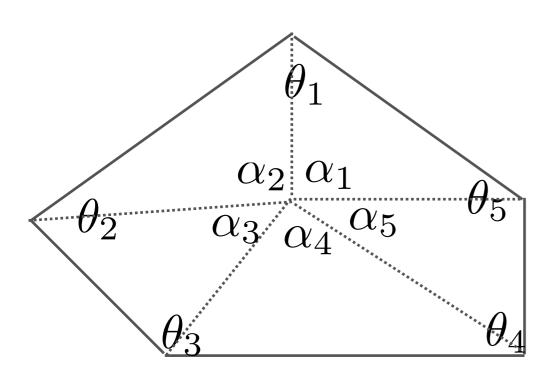
La somme des angles internes d'un triangle est l'angle plat.

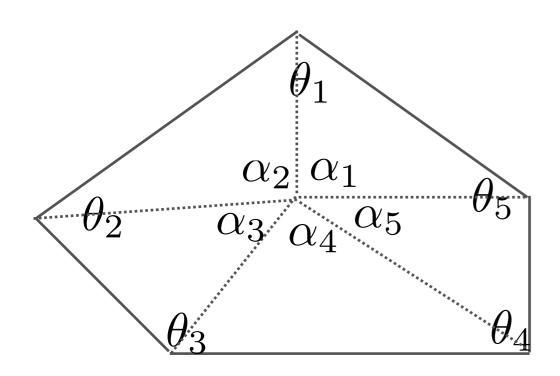
Preuve:

Prenons un triangle quelconque.



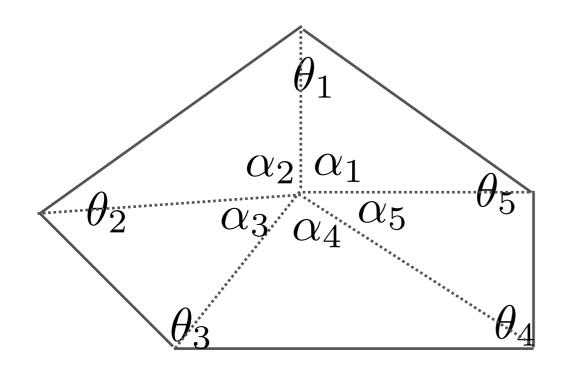






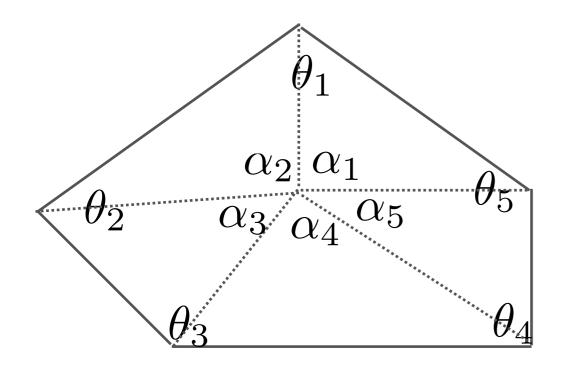
$$\theta_1 + \theta_2 + \theta_3 + \theta_4 + \theta_5 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 5 \times 180^{\circ}$$

La somme des angles internes d'un polygone à n côtés est $(n-2) \times (\text{l'angle plat})$



$$\theta_1 + \theta_2 + \theta_3 + \theta_4 + \theta_5 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 5 \times 180^{\circ}$$

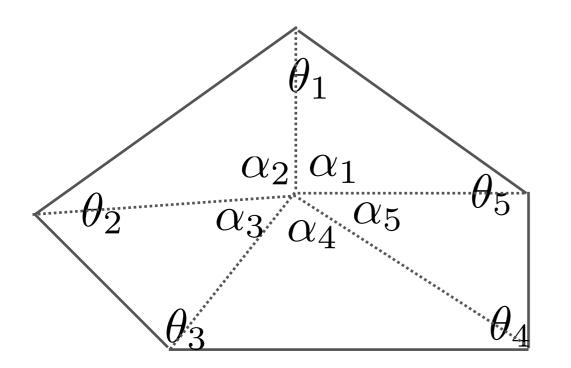
La somme des angles internes d'un polygone à n côtés est $(n-2) \times (\text{l'angle plat})$



$$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 360^{\circ}$$

$$\theta_1 + \theta_2 + \theta_3 + \theta_4 + \theta_5 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 5 \times 180^{\circ}$$

La somme des angles internes d'un polygone à n côtés est $(n-2) \times (\text{l'angle plat})$

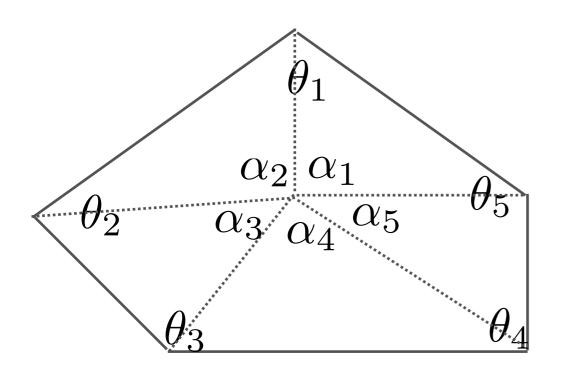


$$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 360^{\circ}$$

= $2 \times 180^{\circ}$

$$\theta_1 + \theta_2 + \theta_3 + \theta_4 + \theta_5 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 5 \times 180^{\circ}$$

La somme des angles internes d'un polygone à n côtés est $(n-2) \times (\text{l'angle plat})$

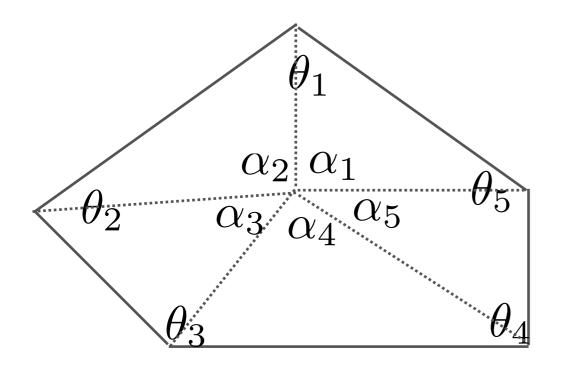


$$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 360^{\circ}$$

$$= 2 \times 180^{\circ}$$

$$\theta_1 + \theta_2 + \theta_3 + \theta_4 + \theta_5 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 5 \times 180^{\circ}$$

La somme des angles internes d'un polygone à n côtés est $(n-2) \times (\text{l'angle plat})$



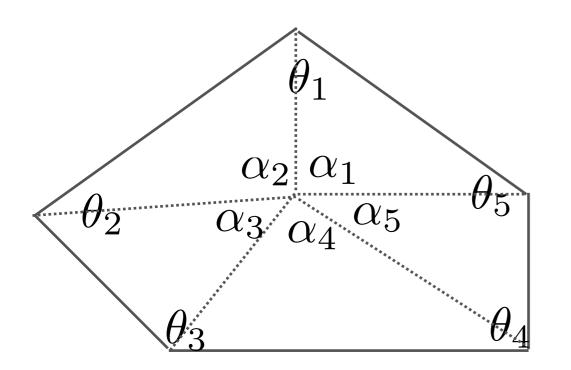
$$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 360^{\circ}$$

$$= 2 \times 180^{\circ}$$

$$\theta_1 + \theta_2 + \theta_3 + \theta_4 + \theta_5 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 5 \times 180^{\circ}$$

$$\theta_1 + \theta_2 + \theta_3 + \theta_4 + \theta_5 = 5 \times 180^{\circ} - 2 \times 180^{\circ}$$

La somme des angles internes d'un polygone à n côtés est $(n-2) \times (l'angle plat)$

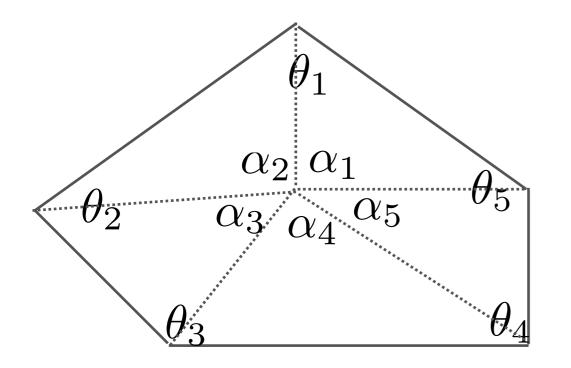


$$\frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5}{= 2 \times 180^{\circ}}$$

$$\theta_1 + \theta_2 + \theta_3 + \theta_4 + \theta_5 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 5 \times 180^{\circ}$$

$$\theta_1 + \theta_2 + \theta_3 + \theta_4 + \theta_5 = 5 \times 180^{\circ} - 2 \times 180^{\circ}$$

La somme des angles internes d'un polygone à n côtés est $(n-2) \times (l'angle plat)$



$$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 360^{\circ}$$

$$= 2 \times 180^{\circ}$$

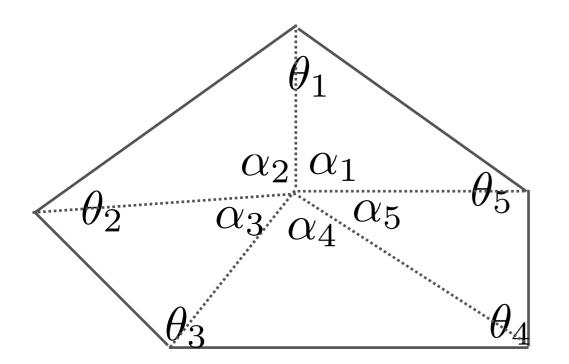
$$\theta_1 + \theta_2 + \theta_3 + \theta_4 + \theta_5 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 5 \times 180^{\circ}$$

$$\theta_1 + \theta_2 + \theta_3 + \theta_4 + \theta_5 = 5 \times 180^{\circ} - 2 \times 180^{\circ}$$

$$= (5 - 2) \times 180^{\circ}$$

La somme des angles internes d'un polygone à n côtés est

$$(n-2) \times (l'angle plat)$$



$$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 360^{\circ}$$

$$= 2 \times 180^{\circ}$$

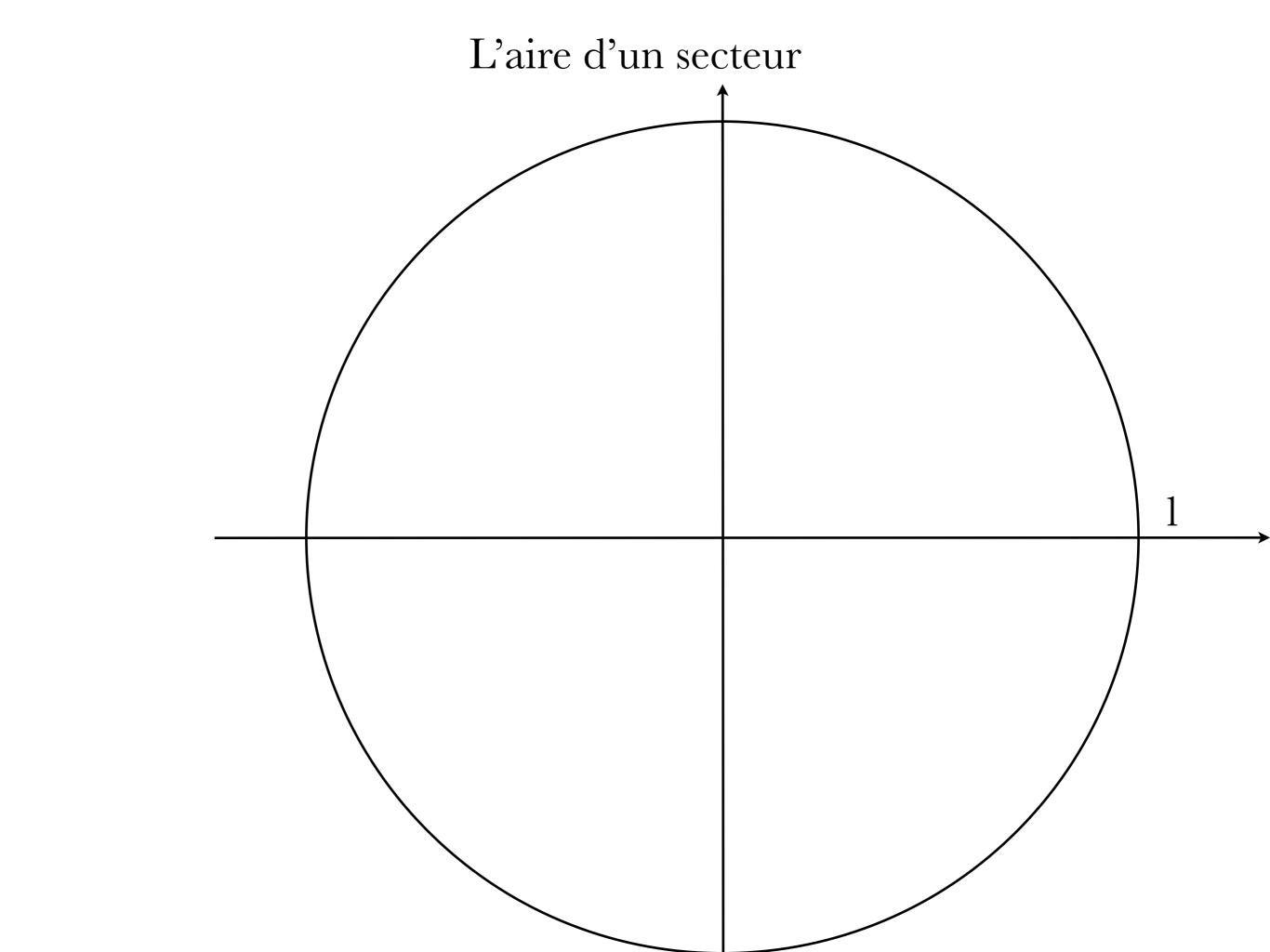
$$\theta_1 + \theta_2 + \theta_3 + \theta_4 + \theta_5 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 5 \times 180^{\circ}$$

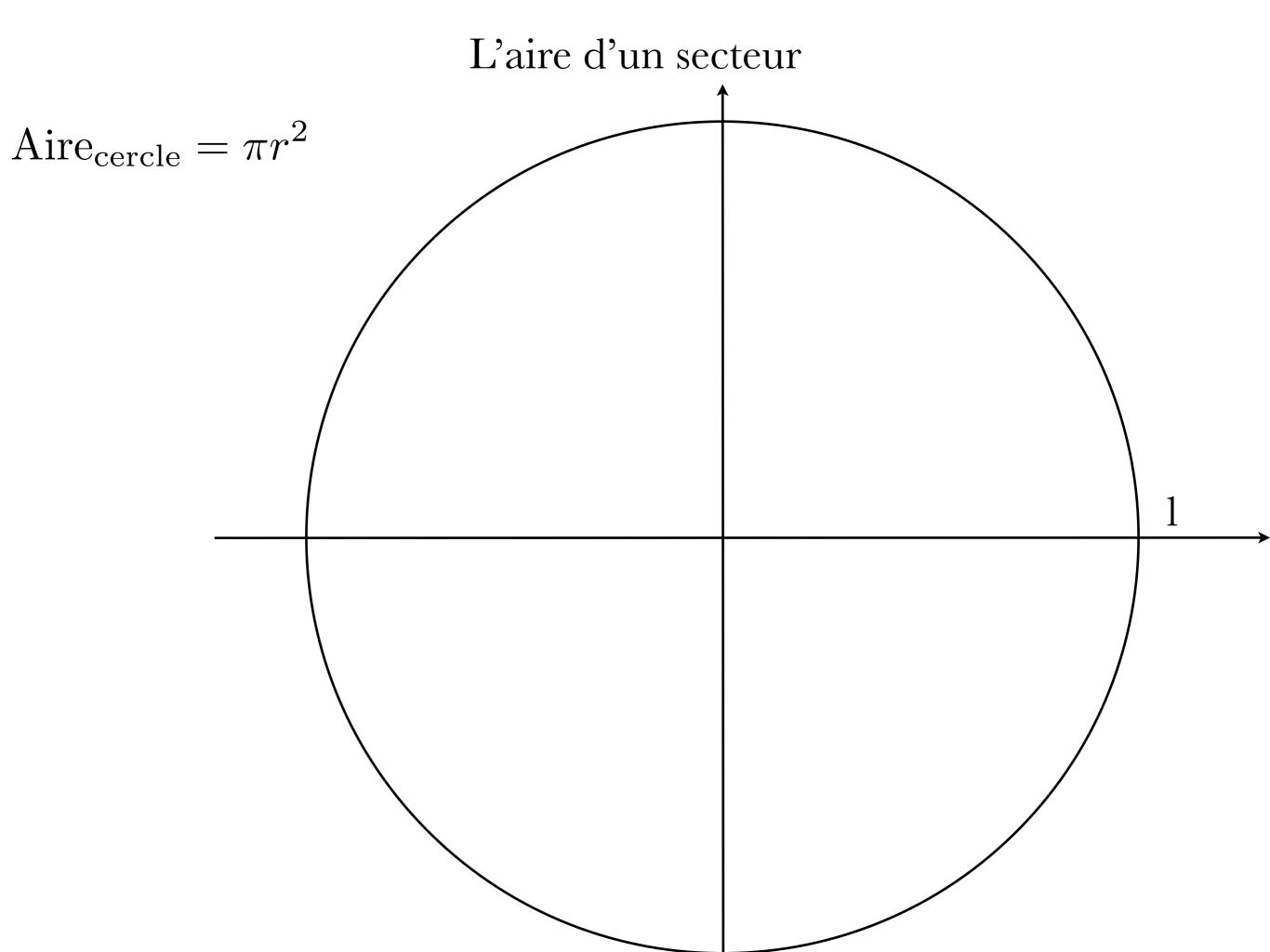
$$\theta_1 + \theta_2 + \theta_3 + \theta_4 + \theta_5 = 5 \times 180^{\circ} - 2 \times 180^{\circ}$$

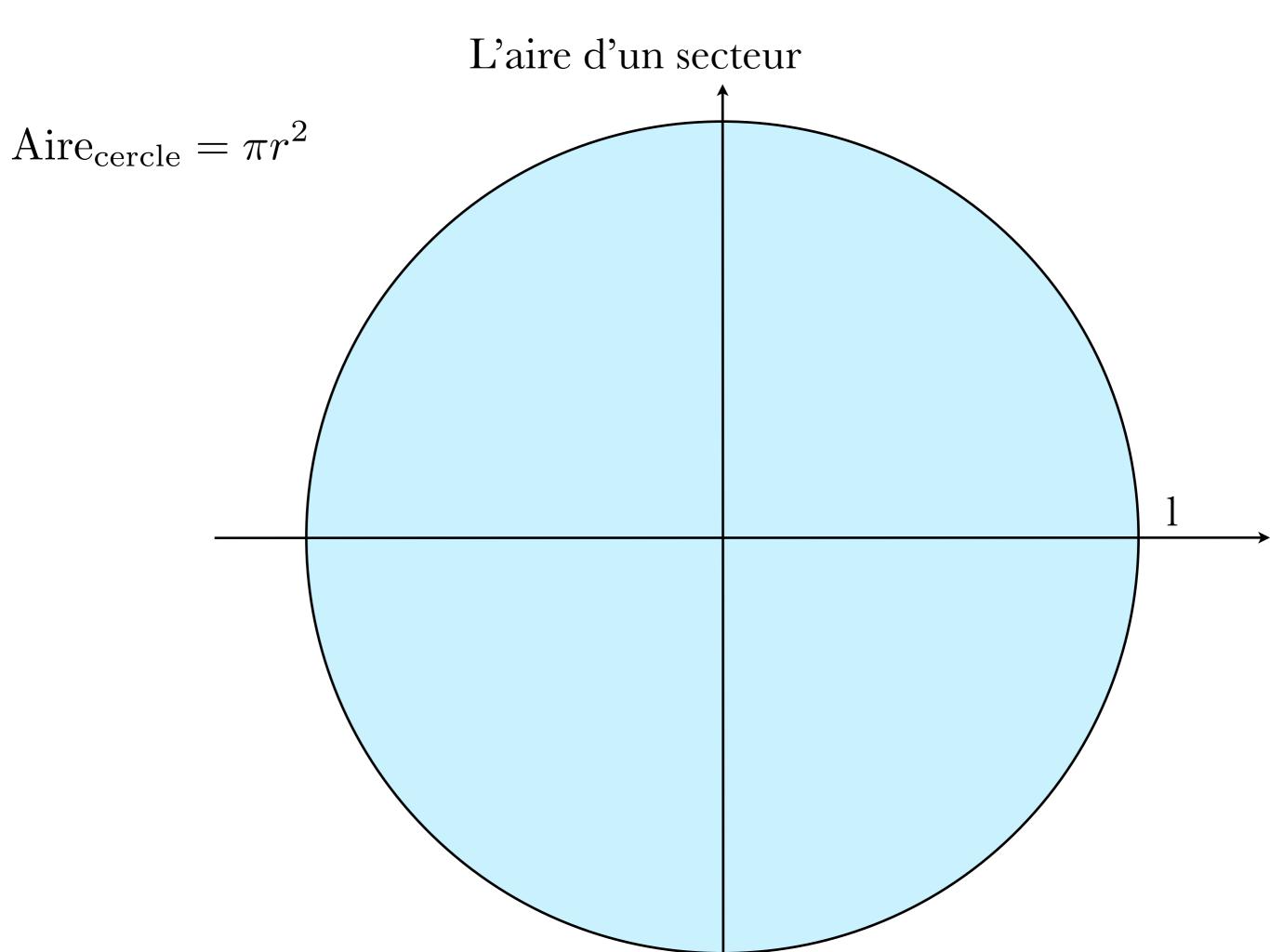
$$= (5 - 2) \times 180^{\circ}$$

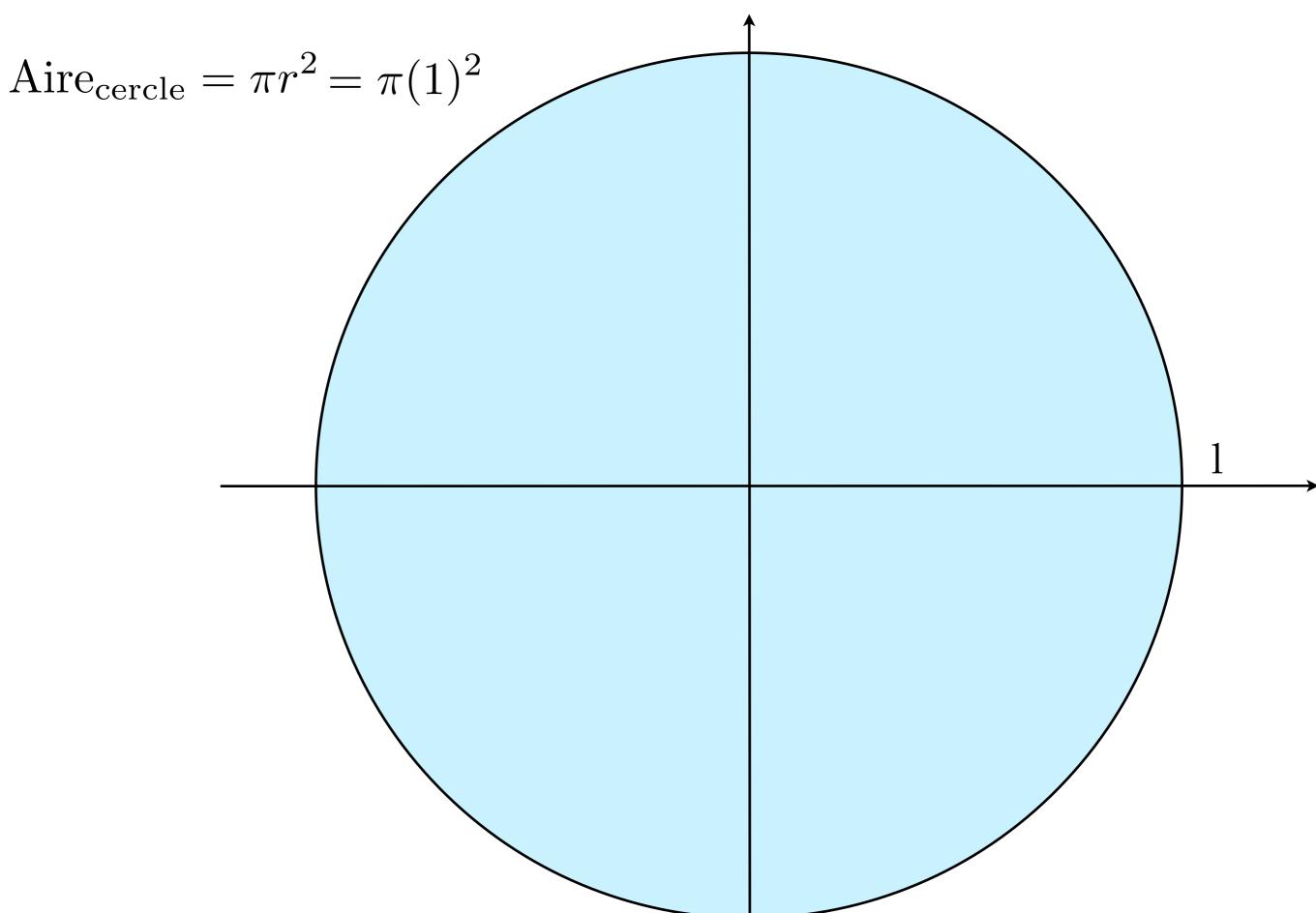
Faites les exercices suivants

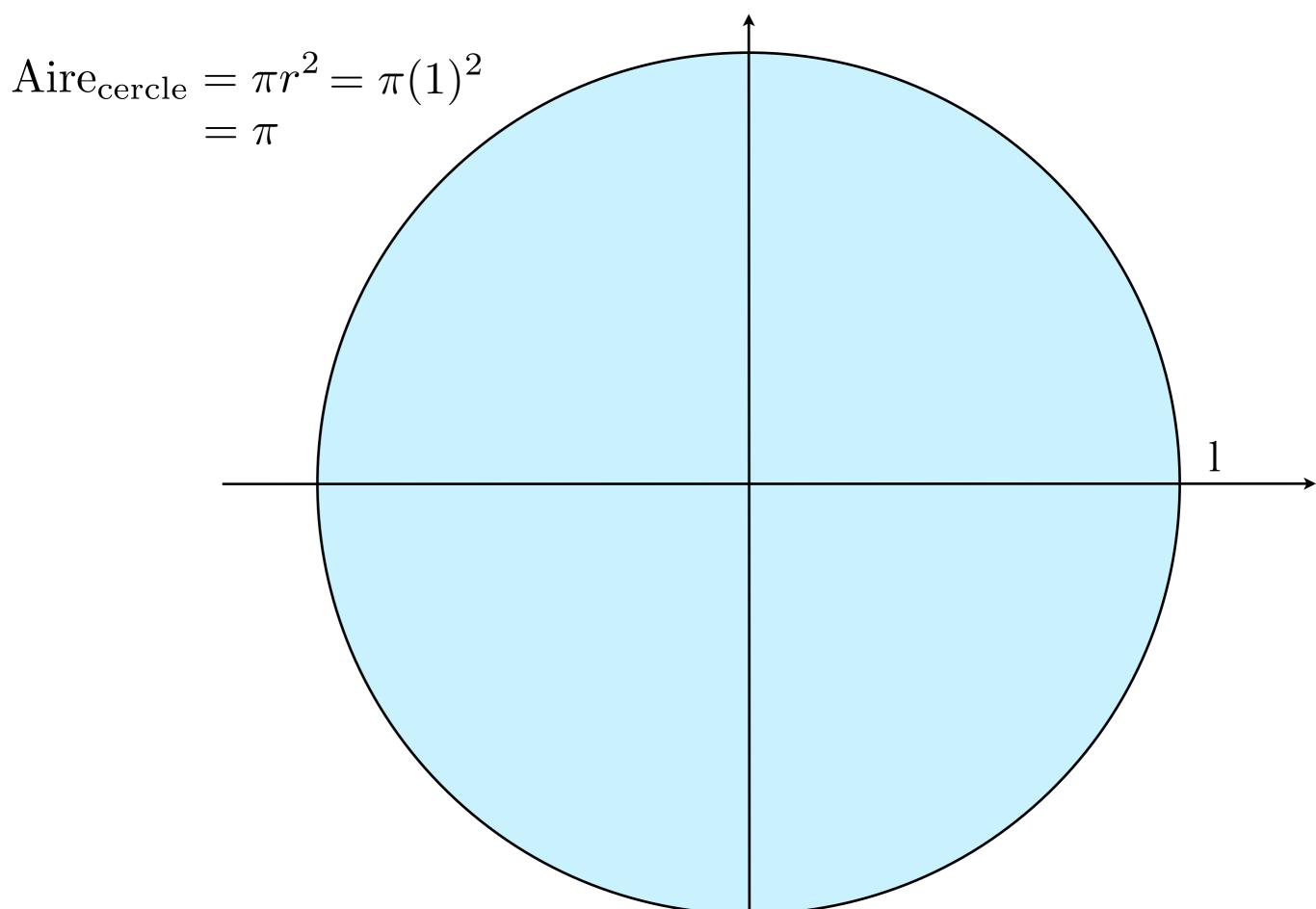
36 à 39

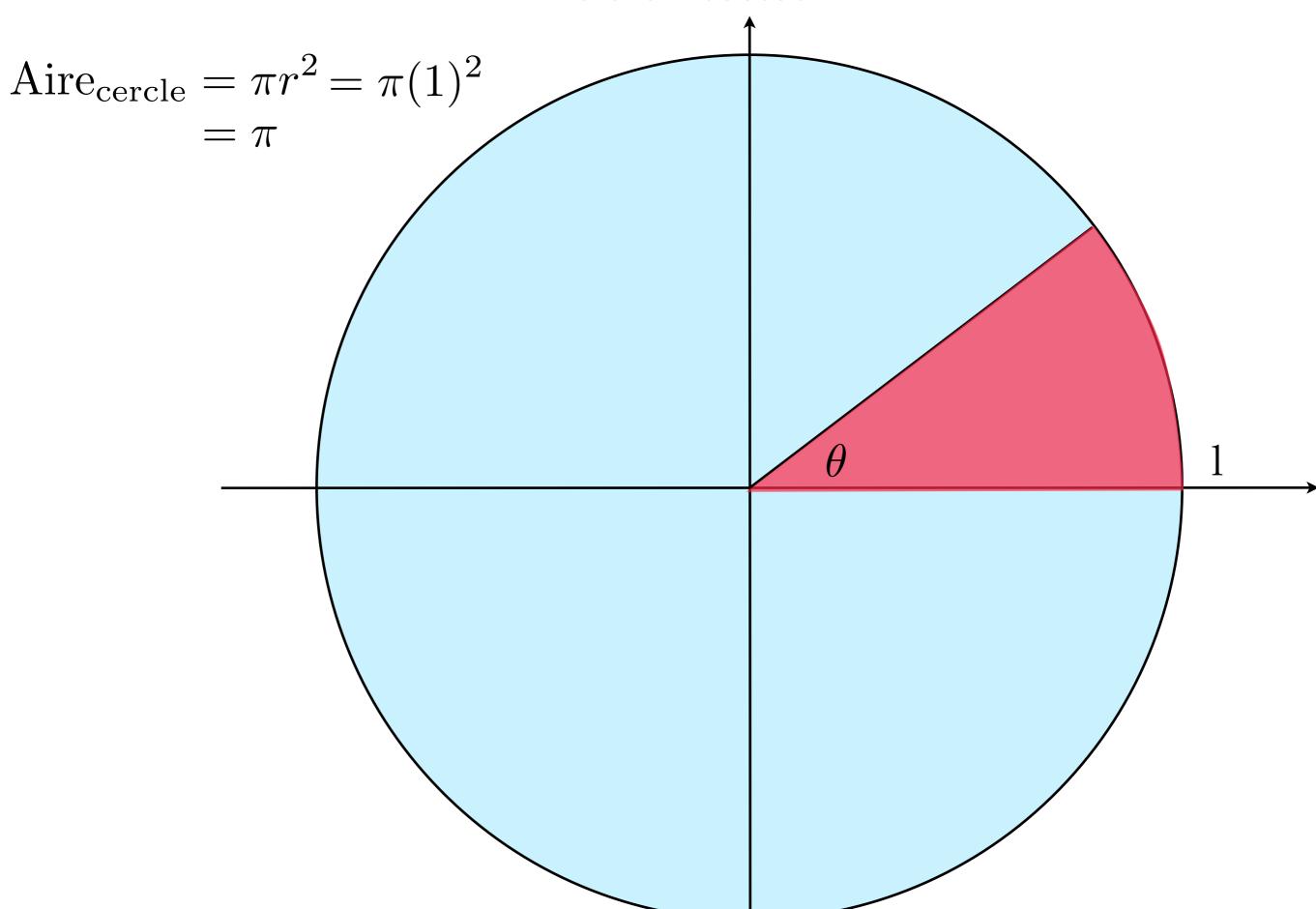


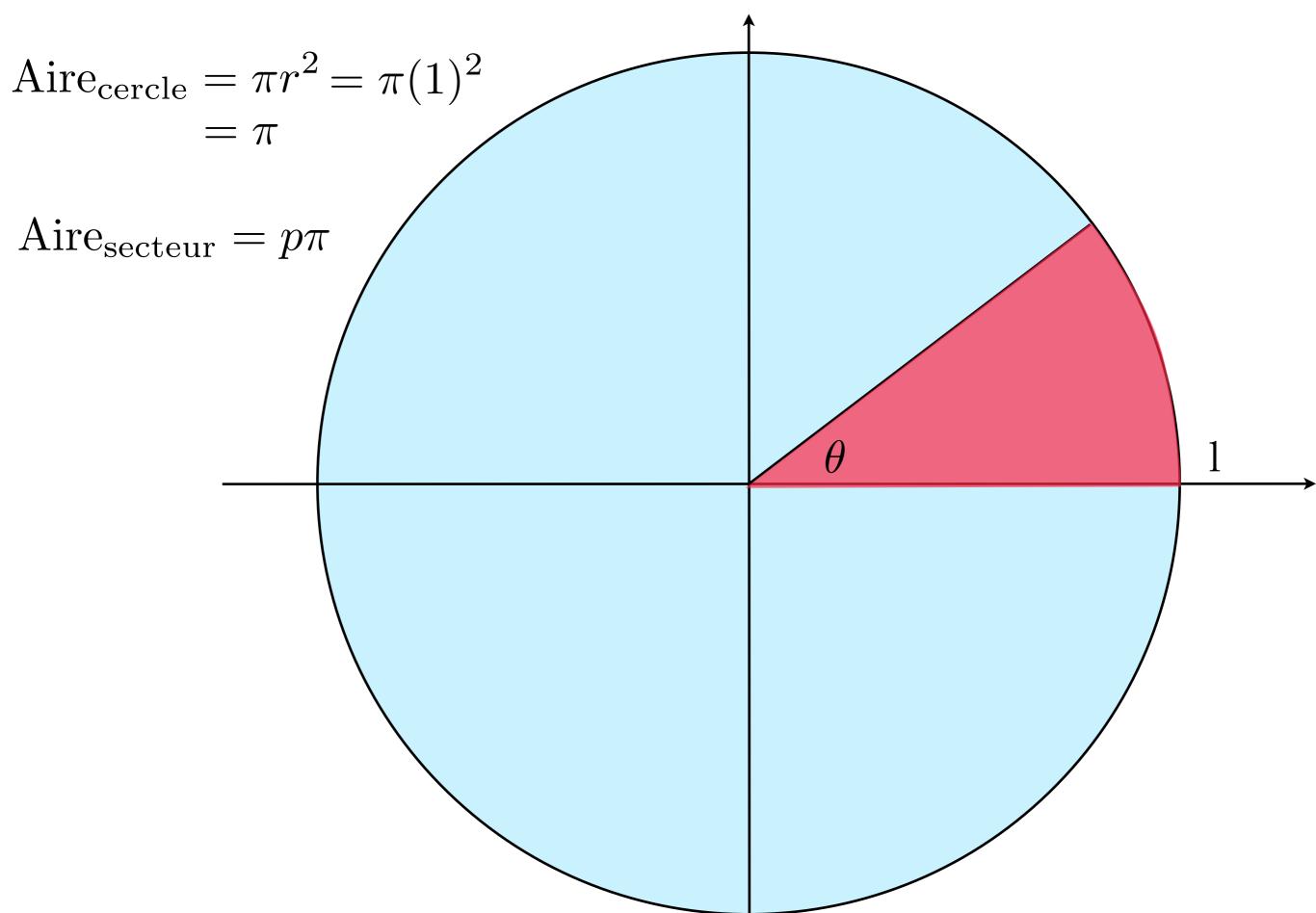








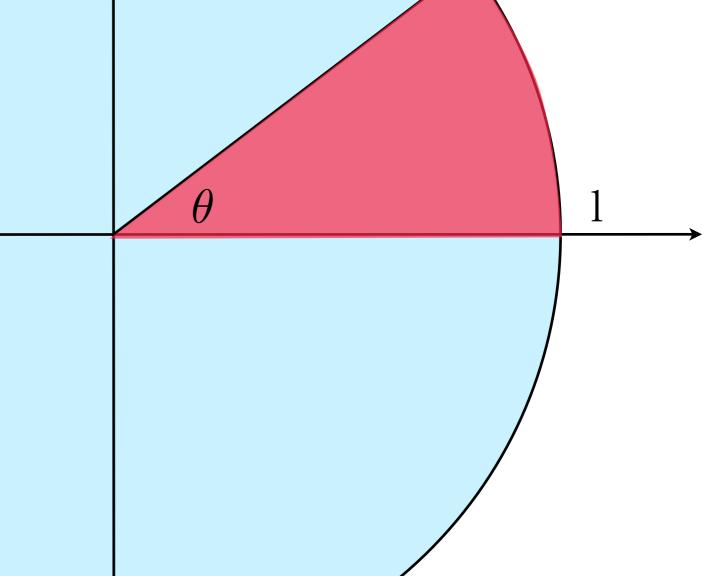




Aire_{cercle} =
$$\pi r^2 = \pi (1)^2$$

= π

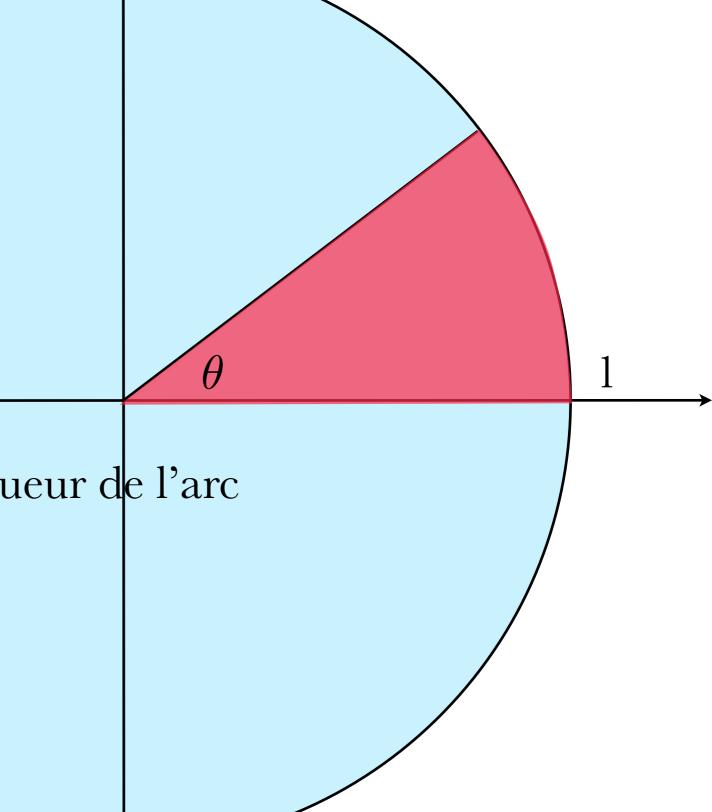
$$Aire_{secteur} = p\pi$$



Aire_{cercle} =
$$\pi r^2 = \pi (1)^2$$

= π

$$Aire_{secteur} = p\pi$$

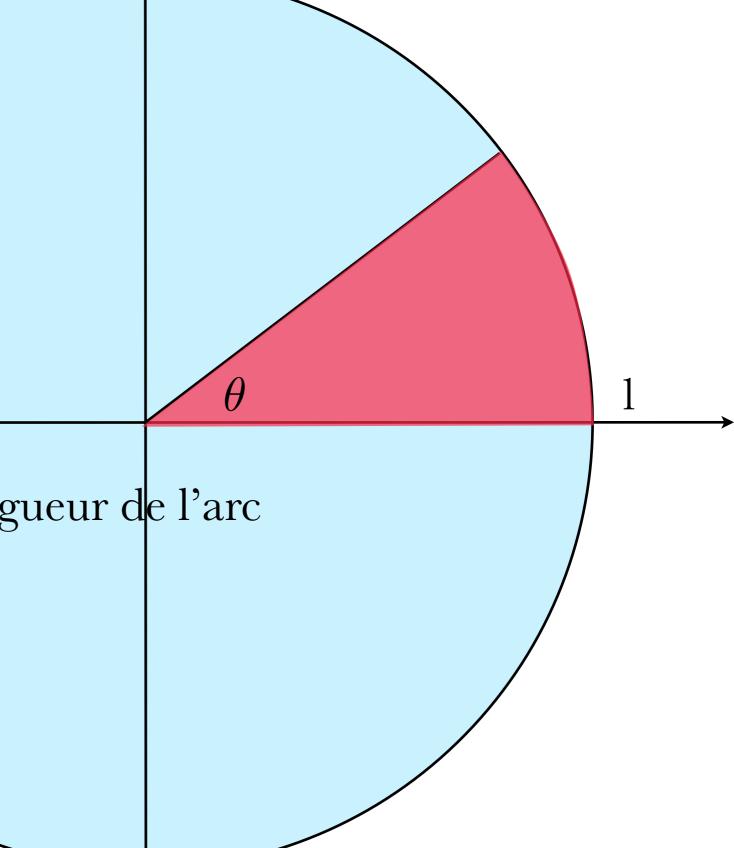


Aire_{cercle} =
$$\pi r^2 = \pi (1)^2$$

= π

$$Aire_{secteur} = p\pi$$

$$Circ_{cercle} = 2\pi r$$

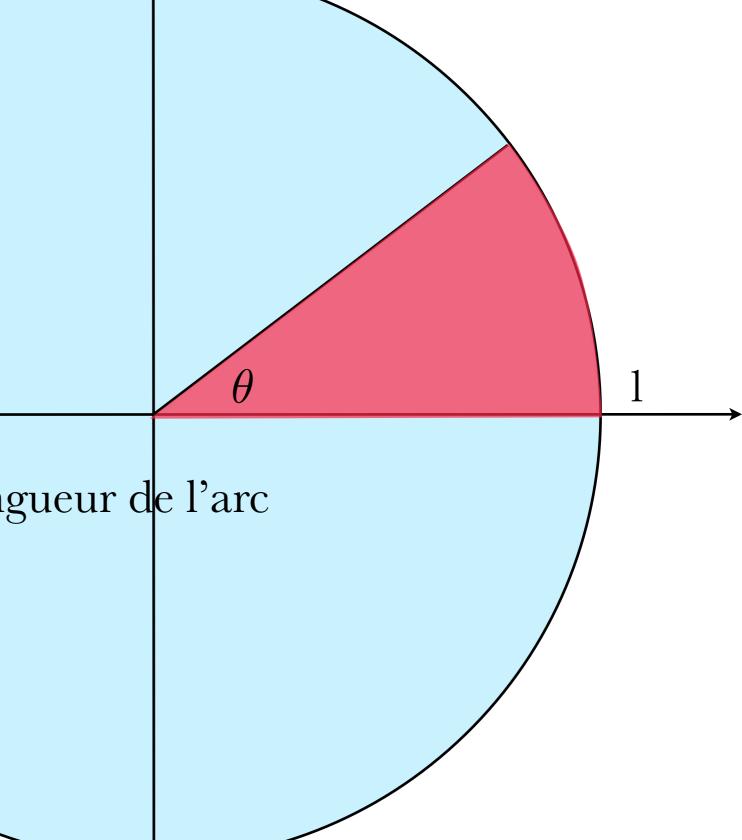


Aire_{cercle} =
$$\pi r^2 = \pi (1)^2$$

= π

$$Aire_{secteur} = p\pi$$

$$Circ_{cercle} = 2\pi r = 2\pi(1)$$



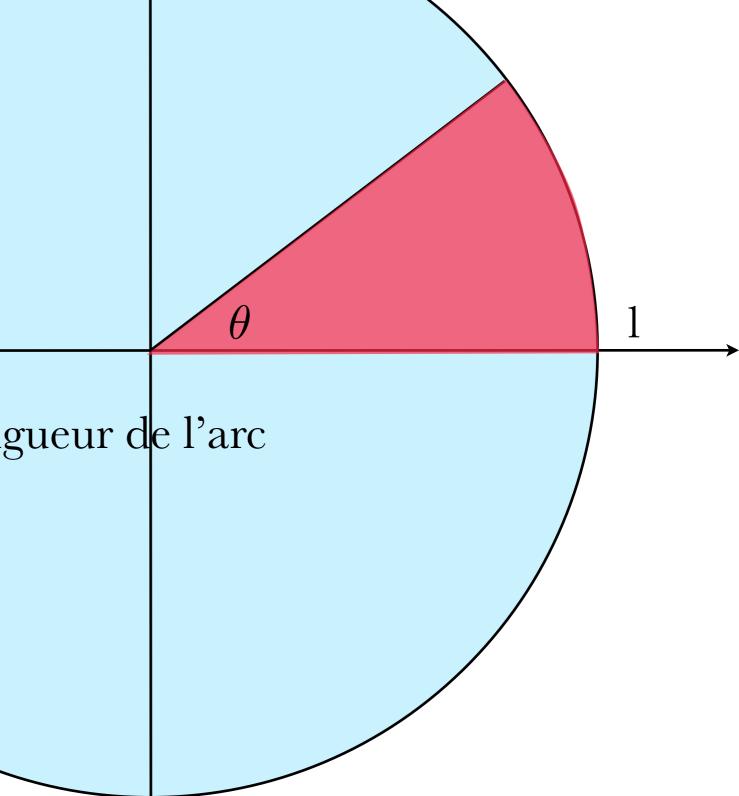
Aire_{cercle} =
$$\pi r^2 = \pi (1)^2$$

= π

$$Aire_{secteur} = p\pi$$

$$Circ_{cercle} = 2\pi r = 2\pi(1)$$
$$= 2\pi$$

$$=2\pi$$



Aire_{cercle} =
$$\pi r^2 = \pi (1)^2$$

= π

$$Aire_{secteur} = p\pi$$

$$Circ_{cercle} = 2\pi r = 2\pi(1)$$
$$= 2\pi$$

$$\theta = p2\pi$$

Aire_{cercle} =
$$\pi r^2 = \pi (1)^2$$

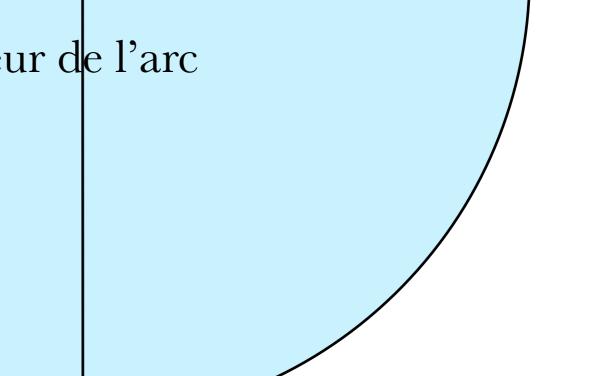
= π

$$Aire_{secteur} = p\pi$$

Circ_{cercle} =
$$2\pi r = 2\pi(1)$$

= 2π
 $\theta = p2\pi \implies p = \frac{\theta}{2\pi}$

$$\theta = p2\pi \implies p = \frac{\theta}{2\pi}$$



Aire_{cercle} =
$$\pi r^2 = \pi (1)^2$$

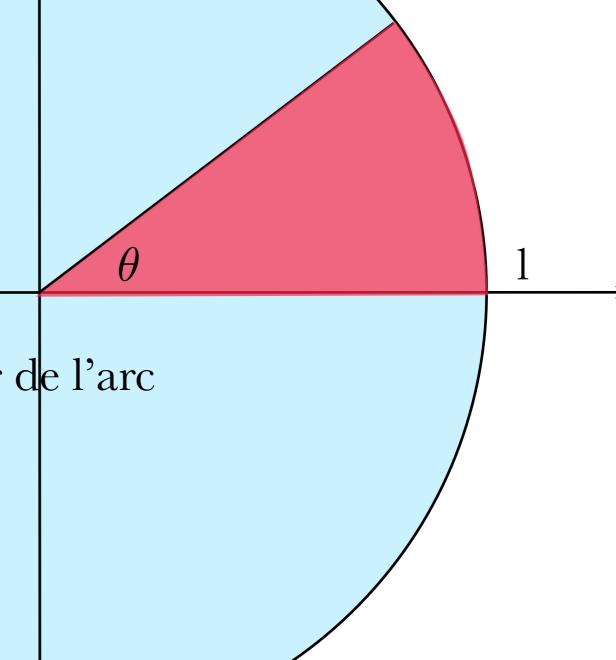
= π

$$Aire_{secteur} = p\pi$$

Circ_{cercle} =
$$2\pi r = 2\pi(1)$$

= 2π
 $\theta = p2\pi \implies p = \frac{\theta}{2\pi}$

$$\theta = p2\pi \implies p = \frac{\sigma}{2\pi}$$



Aire_{cercle} =
$$\pi r^2 = \pi (1)^2$$

= π

$$Aire_{secteur} = p\pi$$

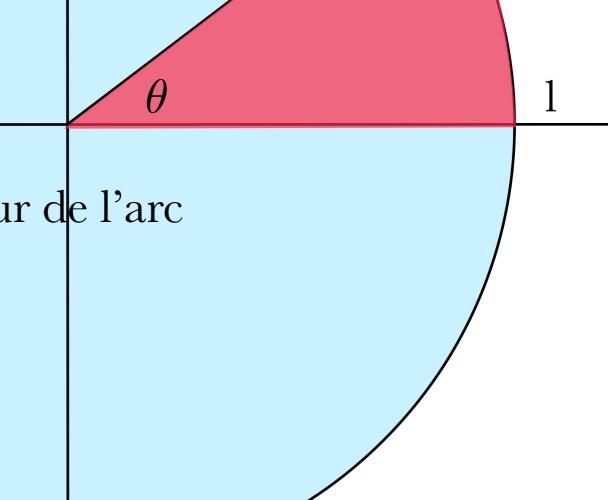
$$=\frac{\theta}{2\pi}\pi$$

Où p est la fraction du cercle

Circ_{cercle} =
$$2\pi r = 2\pi(1)$$

= 2π
 $\theta = p2\pi \implies p = \frac{\theta}{2\pi}$

$$\theta = p2\pi \implies p = \frac{\sigma}{2\pi}$$



Aire_{cercle} =
$$\pi r^2 = \pi (1)^2$$

= π

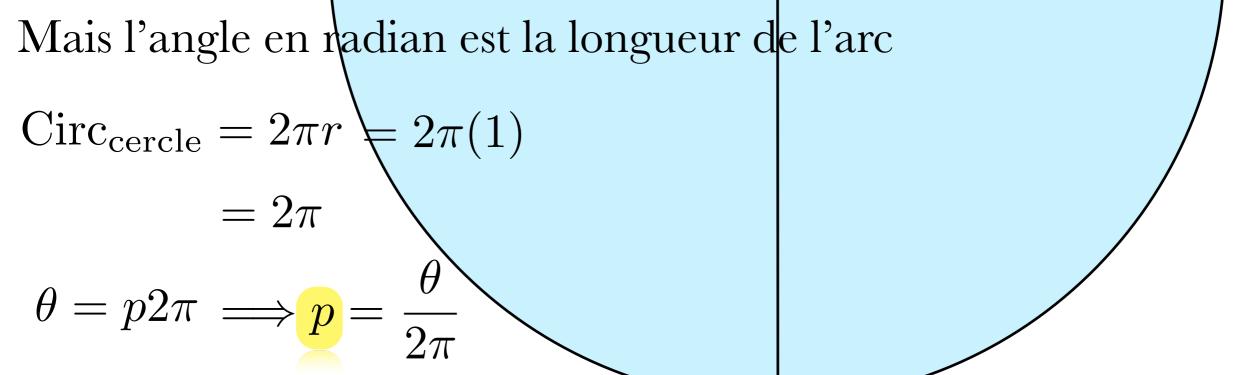
$$Aire_{secteur} = p\pi$$

$$=\frac{\theta}{2\pi}\pi = \frac{\theta}{2}$$

Où p est la fraction du cercle

$$\operatorname{Circ}_{\operatorname{cercle}} = 2\pi r = 2\pi(1)$$
$$-2\pi$$

$$\theta = p2\pi \implies p = \frac{\theta}{2\pi}$$



Aire_{cercle} =
$$\pi r^2 = \pi (1)^2$$

= π

$$Aire_{secteur} = p\pi$$

$$=\frac{\theta}{2\pi}\pi = \frac{\theta}{2}$$

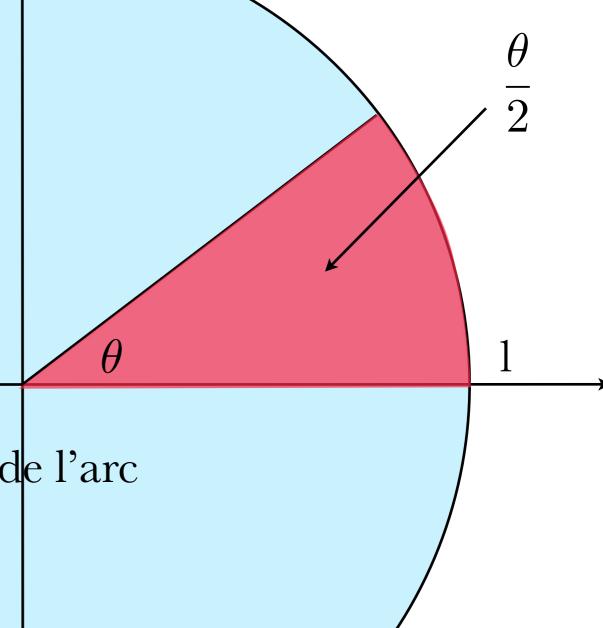
Où p est la fraction du cercle

Mais l'angle en radian est la longueur de l'arc

$$Circ_{cercle} = 2\pi r = 2\pi(1)$$
$$= 2\pi$$

$$=2\pi$$

$$\theta = p2\pi \implies p = \frac{\sigma}{2\pi}$$



Donc

Faites les exercices suivants

40

Devoir:

30 à 40