1.2 COMPOSANTES DES VECTEURS

Cours 2

Au dernier cours, nous avons vu

- √ La définition d'un vecteur géométrique.
- ✓ La somme de vecteurs et ses propriétés.
- √ La multiplication par un scalaire et ses propriétés.
- √ La définition d'un espace vectoriel.
- ✓ L'action des vecteurs sur les points.

Aujourd'hui, nous allons voir

- ✓ Les «atomes» d'un espace vectoriel.
- √ Une façon d'écrire les vecteurs qui simplifie les calculs.

Exemple:

Quels sont la longueur et l'angle du vecteur somme de ces deux vecteurs?

$$a^2 = b^2 + c^2 - 2bc\cos A$$

loi des cosinus

$$a = \sqrt{4 + 9 - 12\cos(80^\circ)}$$

$$\frac{\sin \theta}{2} = \frac{\sin(80^\circ)}{a}$$

loi des sinus

$$\theta = \arcsin\left(\frac{2\sin(80^\circ)}{a}\right)$$

$$\alpha = 150^{\circ} - \theta$$

$$2$$

$$50^{\circ}$$

angle alterne-interne

Hum... pas la joie!

Bon... on n'imagine même pas faire ça dans l'espace!

Le cours d'aujourd'hui sert à mettre en place les outils nécessaires pour rendre cette tâche beaucoup plus simple.

Une combinaison linéaire d'éléments d'un espace vectoriel réel \mathcal{V} est n'importe quelle expression de la forme:

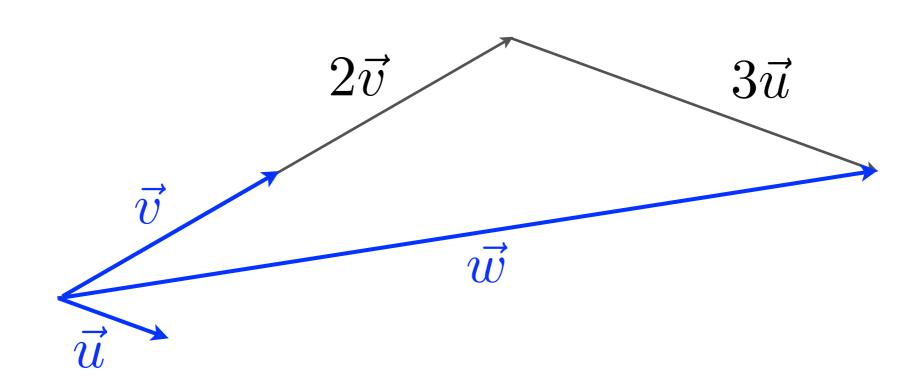
$$a_1\vec{v}_1 + a_2\vec{v}_2 + a_3\vec{v}_3 + \cdots + a_n\vec{v}_n$$

où les $a_i \in \mathbb{R}$ et les $\vec{v}_i \in \mathcal{V}$.

Un ensemble de vecteurs non nuls $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ d'un espace vectoriel \mathcal{V} est dit linéairement indépendant si aucun d'entre eux n'est combinaison linéaire des autres. Sinon, on dit qu'ils sont linéairement dépendants.

Exemple:

Les trois vecteurs suivants sont linéairement dépendants car



$$\vec{w} = 2\vec{v} + 3\vec{u}$$

Vérifier si un ensemble de vecteurs est linéairement indépendant n'est pas une mince affaire!

Le théorème qui suit permet de faire cette vérification beaucoup plus simplement.

Théorème:

Un ensemble de vecteurs $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$, non nuls, est linéairement indépendant

$$\iff$$

La seule combinaison linéaire de ces vecteurs qui donne le vecteur nul est celle où tous les coefficients sont 0.

C.-à-d.
$$(a_1\vec{v}_1 + a_2\vec{v}_2 + a_3\vec{v}_3 + \dots + a_n\vec{v}_n = 0)$$

$$\implies a_1 = a_2 = \dots = a_n = 0)$$

Preuve: (\Longrightarrow) Si $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ sont linéairement indépendants,

supposons qu'il existe une combinaison linéaire

Dong, veat l'inversaute ça.

$$a_1\vec{v}_1 + a_2\vec{v}_2 + a_3\vec{v}_3 + \dots + a_n\vec{v}_n = \vec{0}$$

avec au moins un des $a_i \neq 0$, prenons $a_1 \neq 0$

$$a_{1}\vec{v}_{1} + a_{2}\vec{v}_{2} + a_{3}\vec{v}_{3} + \dots + a_{n}\vec{v}_{n} - a_{1}\vec{v}_{1} = \vec{0} - a_{1}\vec{v}_{1}$$

$$a_{2}\vec{v}_{2} + a_{3}\vec{v}_{3} + \dots + a_{n}\vec{v}_{n} = -a_{1}\vec{v}_{1}$$

$$\left(-\frac{1}{a_{1}}\right)(a_{2}\vec{v}_{2} + a_{3}\vec{v}_{3} + \dots + a_{n}\vec{v}_{n}) = \vec{v}_{1}$$

$$\left(-\frac{a_{2}}{a_{1}}\right)\vec{v}_{2} + \left(-\frac{a_{3}}{a_{1}}\right)\vec{v}_{3} + \dots + \left(-\frac{a_{n}}{a_{1}}\right)\vec{v}_{n} = \vec{v}_{1}$$

Ce qui contredit l'hypothèse que les vecteurs étaient linéairement indépendants.

Preuve: (\Longrightarrow) Si $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ sont linéairement indépendants,

La seule combinaison linéaire qui donne le vecteur nul est celle où tous les coefficients sont 0.

$$a_1 \vec{v}_1 + a_2 \vec{v}_2 + a_3 \vec{v}_3 + \dots + a_n \vec{v}_n - a_1 \vec{v}_1 = \vec{0} - a_1 \vec{v}_1$$

$$a_2 \vec{v}_2 + a_3 \vec{v}_3 + \dots + a_n \vec{v}_n = -a_1 \vec{v}_1$$

$$\left(-\frac{1}{a_1}\right) (a_2 \vec{v}_2 + a_3 \vec{v}_3 + \dots + a_n \vec{v}_n) = \vec{v}_1$$

$$\left(-\frac{a_2}{a_1}\right) \vec{v}_2 + \left(-\frac{a_3}{a_1}\right) \vec{v}_3 + \dots + \left(-\frac{a_n}{a_1}\right) \vec{v}_n = \vec{v}_1$$

Ce qui contredit l'hypothèse que les vecteurs étaient linéairement indépendants.

Preuve (suite): (<==)

Si la seule combinaison linéaire de ces vecteurs qui donne le vecteur nul est celle où tous les coefficients sont 0,

supposons que les vecteurs $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ sont linéairement dépendants.

Il existe donc un vecteur qui est combinaison l'inverse de ç linéaire des autres.

$$\vec{v}_1 = a_2 \vec{v}_2 + a_3 \vec{v}_3 + \dots + a_n \vec{v}_n$$
 Puisque $\vec{v}_1 \neq \vec{0}$, au moins un des $a_i \neq 0$ $\vec{0} = -\vec{v}_1 + a_2 \vec{v}_2 + a_3 \vec{v}_3 + \dots + a_n \vec{v}_n$

Ce qui contredit l'hypothèse que la seule combinaison linéaire qui donne le vecteur nul est celle où tous les coefficients sont 0.

Preuve (suite): (<==)

Si la seule combinaison linéaire de ces vecteurs qui donne le vecteur nul est celle où tous les coefficients sont 0,

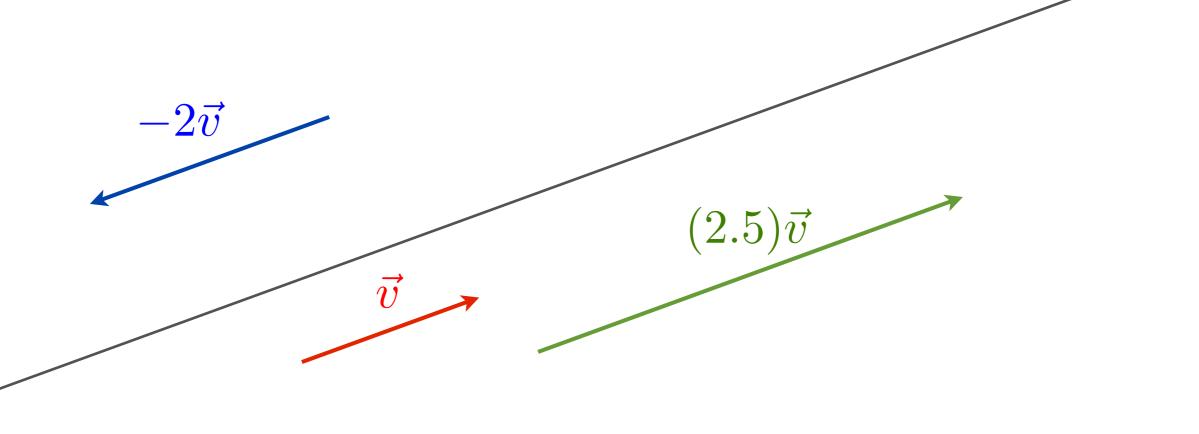
Les vecteurs
$$\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$$
 sont linéairement indépendants.

Il existe donc un vecteur qui est combinaison linéaire des autres.

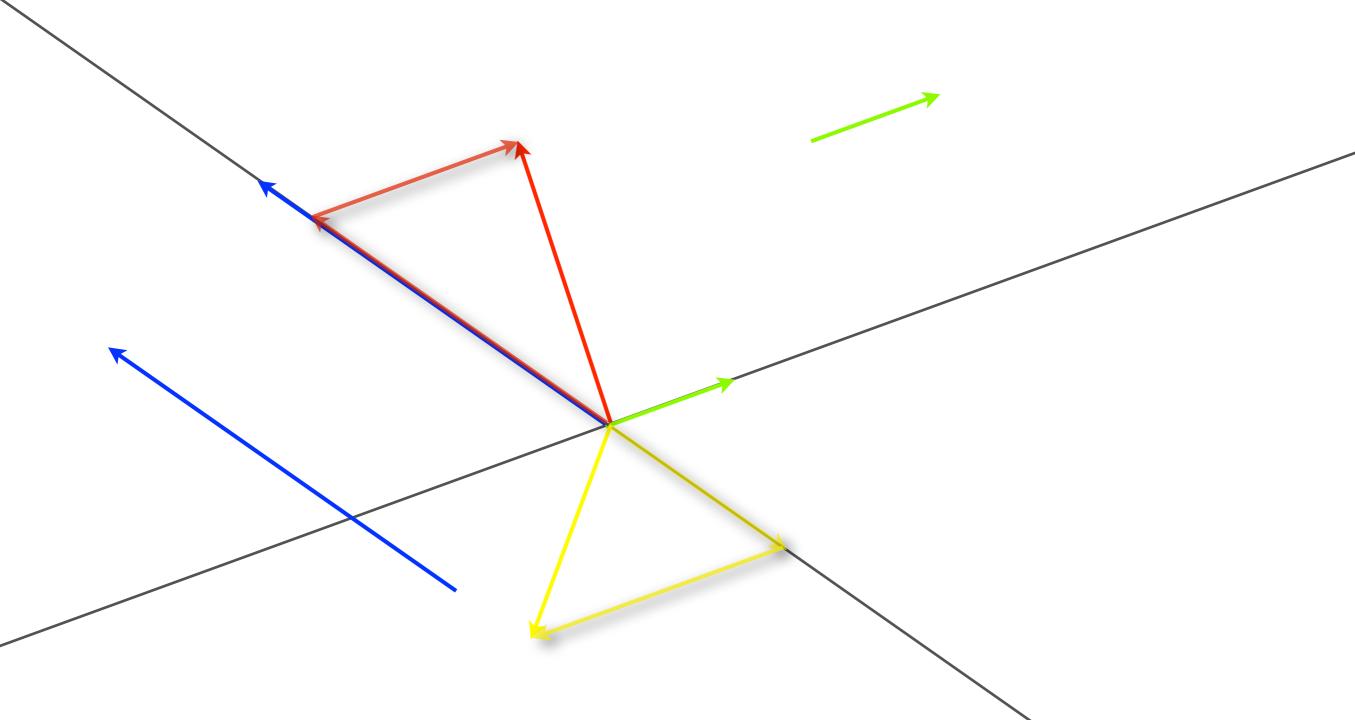
$$\vec{v}_1 = a_2 \vec{v}_2 + a_3 \vec{v}_3 + \dots + a_n \vec{v}_n$$
 Puisque $\vec{v}_1 \neq \vec{0}$, au moins un des $a_i \neq 0$ $\vec{0} = -\vec{v}_1 + a_2 \vec{v}_2 + a_3 \vec{v}_3 + \dots + a_n \vec{v}_n$

Ce qui contredit l'hypothèse que la seule combinaison linéaire qui donne le vecteur nul est celle où tous les coefficients sont 0.

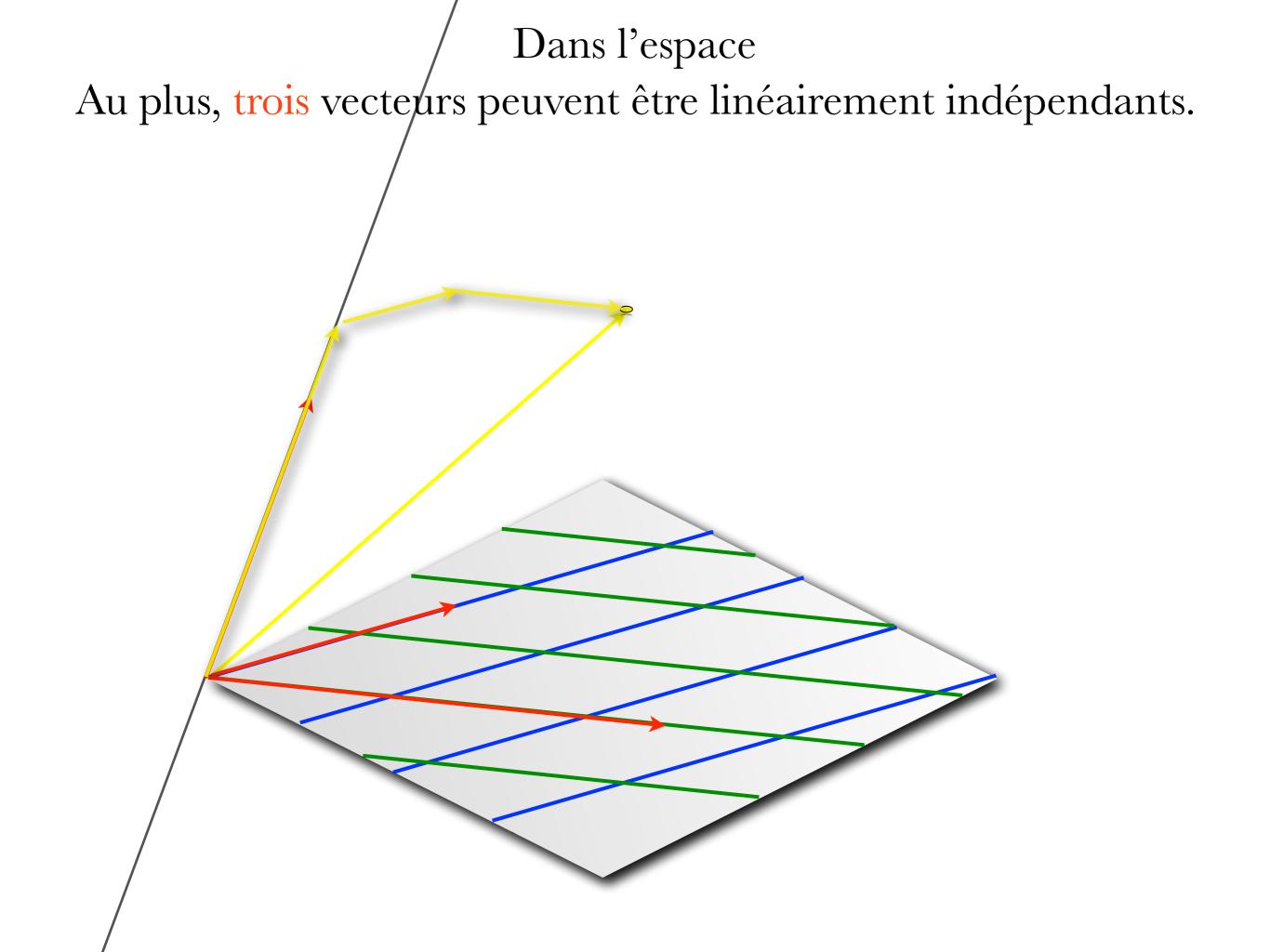
Sur une droite



Tous les vecteurs sont linéairement dépendants d'un vecteur ayant la même direction que la droite.



Au plus, deux vecteurs peuvent être linéairement indépendants.



Faites les exercices suivants

p.25 # 1, 2 et 3

Une base d'un espace vectoriel \mathcal{V} est un ensemble de vecteurs non nuls

$$S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$$

linéairement indépendants tel que tout vecteur $\vec{u} \in \mathcal{V}$ peut s'écrire comme combinaison linéaire d'éléments de S.

$$\vec{u} = a_1 \vec{v}_1 + a_2 \vec{v}_2 + a_3 \vec{v}_3 + \dots + a_n \vec{v}_n$$

Remarque:

Le but d'une base est de pouvoir décrire tous les vecteurs d'un espace vectoriel à l'aide d'un petit sous-ensemble de \mathcal{V} .

La condition que ces vecteurs soient linéairement indépendants assure que le sous-ensemble est le plus petit possible.

Une base d'un espace affine est une base de son espace vectoriel sous-jacent.

La dimension d'un espace vectoriel \mathcal{V} est le nombre d'éléments d'une de ses bases. On note la dimension de \mathcal{V} , $\dim(\mathcal{V})$.

Une base ordonnée d'un espace vectoriel \mathcal{V} est une base de cet espace qu'on a mis dans un certain ordre.

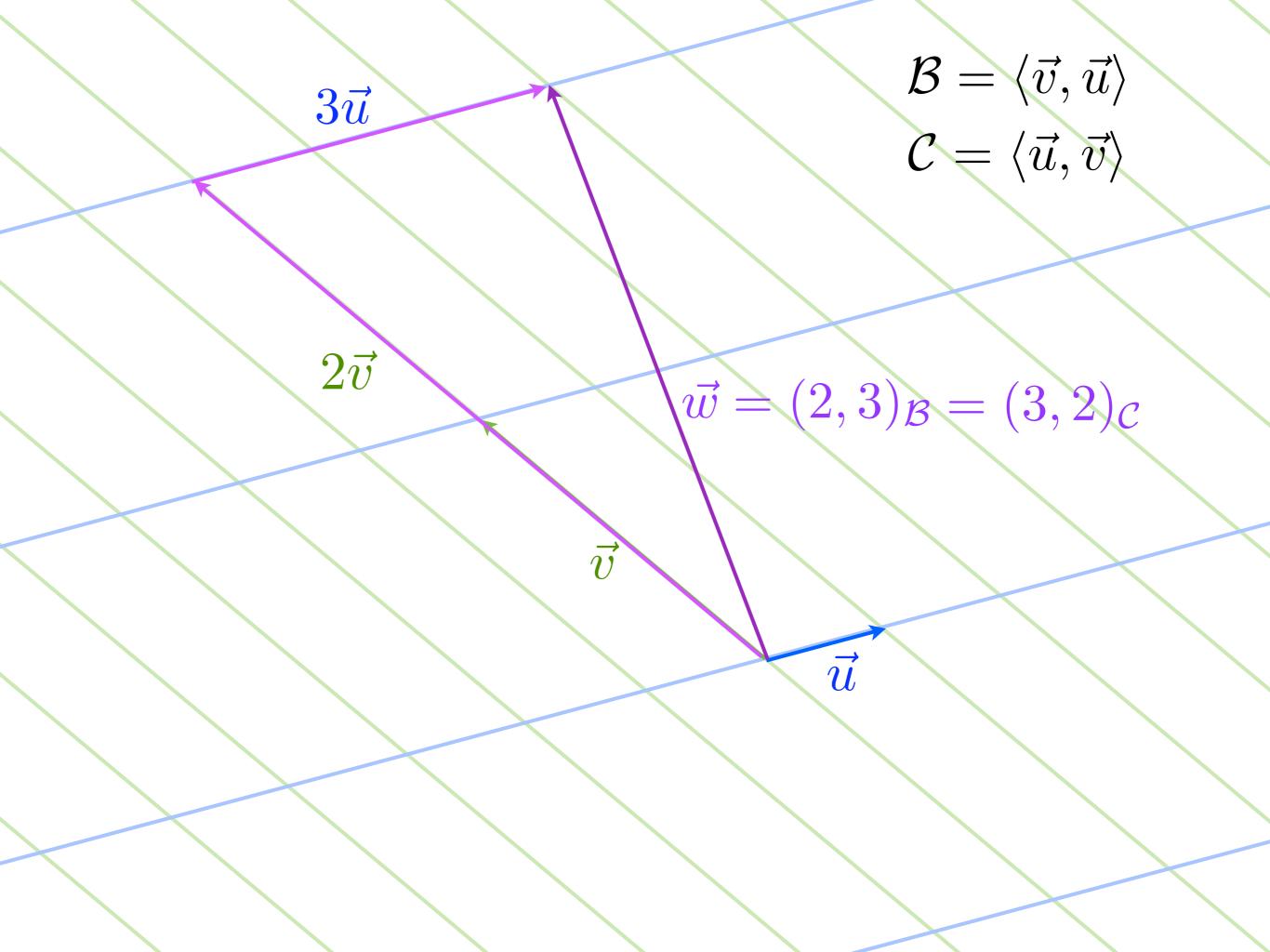
$$\mathcal{B} = \langle \vec{v}_1, \vec{v}_2, \dots, \vec{v}_n \rangle$$

Soit $\mathcal{B} = \langle \vec{v}_1, \vec{v}_2, \dots, \vec{v}_n \rangle$, une base ordonnée d'un espace vectoriel \mathcal{V} et soit $\vec{u} \in \mathcal{V}$ un vecteur de cet espace. On a

$$\vec{u} = a_1 \vec{v}_1 + a_2 \vec{v}_2 + a_3 \vec{v}_3 + \dots + a_n \vec{v}_n$$

Les composantes de \vec{u} selon la base \mathcal{B} sont $(a_1, a_2, a_3, \ldots, a_n)_{\mathcal{B}}$

Et on écrit alors
$$\vec{u} = (a_1, a_2, a_3, \dots, a_n)_{\mathcal{B}}$$



Théorème:

Soit $\vec{u} \in \mathcal{V}$ et $\mathcal{B} = \langle \vec{v}_1, \vec{v}_2, \dots, \vec{v}_n \rangle$, une base ordonnée de \mathcal{V} . Les composantes de \vec{u} dans la base \mathcal{B} sont uniques.

Preuve:

Supposons qu'on ait deux écritures pour \vec{u} ,

$$\vec{u} = a_1 \vec{v}_1 + a_2 \vec{v}_2 + a_3 \vec{v}_3 + \dots + a_n \vec{v}_n$$
$$\vec{u} = b_1 \vec{v}_1 + b_2 \vec{v}_2 + b_3 \vec{v}_3 + \dots + b_n \vec{v}_n$$

$$\vec{u} - \vec{u} = a_1 \vec{v}_1 + a_2 \vec{v}_2 + a_3 \vec{v}_3 + \dots + a_n \vec{v}_n$$

$$-b_1 \vec{v}_1 - b_2 \vec{v}_2 - b_3 \vec{v}_3 - \dots - b_n \vec{v}_n$$

$$\vec{0} = (a_1 - b_1)\vec{v}_1 + (a_2 - b_2)\vec{v}_2 + (a_3 - b_3)\vec{v}_3 + \dots + (a_n - b_n)\vec{v}_n$$

Mais puisque B est une base, ces vecteurs sont linéairement indépendants et donc, par le dernier théorème, on a que

$$(a_1 - b_1) = (a_2 - b_2) = (a_3 - b_3) = \dots = (a_n - b_n) = 0$$

d'où $a_i = b_i$

Donc, les deux écritures étaient les mêmes.

Corollaire:

Soit $\vec{u}=(a_1,a_2,a_3,\ldots,a_n)_{\mathcal{B}}$ et $\vec{v}=(b_1,b_2,b_3,\ldots,b_n)_{\mathcal{B}}$, deux vecteurs écrits dans la même base. Alors

Proposition mathématique ou logique pour $i=1,2,\ldots,n$ qui se déduit immédiatement d'une proposition qui vient d'être démontrée.

Opérations sur les composantes.

Soit
$$\mathcal{B} = \langle \vec{v}_1, \vec{v}_2, \dots, \vec{v}_n \rangle$$
 une base de \mathcal{V} , $\vec{u} = (a_1, a_2, \dots, a_n)_{\mathcal{B}}$ $\in \mathcal{V}$ et $k \in \mathbb{R}$ $\vec{w} = (b_1, b_2, \dots, b_n)_{\mathcal{B}}$

Multiplication par un scalaire

$$k\vec{u} = k(a_1\vec{v}_1 + a_2\vec{v}_2 + \dots + a_n\vec{v}_n)$$

$$= k(a_1\vec{v}_1) + k(a_2\vec{v}_2) + \dots + k(a_n\vec{v}_n)$$

$$= (ka_1)\vec{v}_1 + (ka_2)\vec{v}_2 + \dots + (ka_n)\vec{v}_n$$

Donc
$$k\vec{u} = (ka_1, ka_2, \dots, ka_n)_{\mathcal{B}}$$

Somme de vecteurs

$$\vec{u} = (a_1, a_2, \dots, a_n)_{\mathcal{B}}$$
 $\vec{w} = (b_1, b_2, \dots, b_n)_{\mathcal{B}}$

$$\vec{u} + \vec{w} = (a_1 \vec{v}_1 + a_2 \vec{v}_2 + \dots + a_n \vec{v}_n) + (b_1 \vec{v}_1 + b_2 \vec{v}_2 + \dots + b_n \vec{v}_n)$$

$$= a_1 \vec{v}_1 + b_1 \vec{v}_1 + a_2 \vec{v}_2 + b_2 \vec{v}_2 + \dots + a_n \vec{v}_n + b_n \vec{v}_n$$

$$= (a_1 + b_1)\vec{v}_1 + (a_2 + b_2)\vec{v}_2 + \dots + (a_n + b_n)\vec{v}_n$$

Donc
$$\vec{u} + \vec{w} = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)_{\mathcal{B}}$$

Ç'a l'air un peu trop arrangé avec le gars des vues!

Multiplication par un scalaire

$$k(a_1, a_2, \dots, a_n)_{\mathcal{B}} = (ka_1, ka_2, \dots, ka_n)_{\mathcal{B}}$$

Somme de vecteurs

$$(a_1, a_2, \dots, a_n)_{\mathcal{B}} + (b_1, b_2, \dots, b_n)_{\mathcal{B}}$$

= $(a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)_{\mathcal{B}}$

$$\mathcal{B} = \langle \vec{v}, \vec{u} \rangle$$

$$(1, -3)$$

$$\vec{v}$$

$$(-2, -1) = (1, -3) + (-3, 2)$$

Faites les exercices suivants

p.26 # 4 à 6

Aujourd'hui, nous avons vu

- √ Les ensembles de vecteurs linéairement indépendants.
- ✓ Une base d'un espace vectoriel.
- ✓ La dimension d'un espace vectoriel.
- ✓ Les composantes d'un vecteur par rapport à une base ordonnée.

Devoir: p. 25, # 1 à 14